
www.SteamPoweredRadio.Com

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

I

l

A NEW APPROACH TO

DIGITAL COMPUTER LOGIC

18-2

by

Burt Libe

Copyright © 1968, 1970

by

Libe Company and Burt Libe

All rights reserved under International and Pan-American Copyright
Conventions. No reproduction of this book in whole or in part may
be made without written permission of the publisher. Quotations of
ten lines or less are excepted, provided acknowledgement is given.

Printed in the United States of America

Library of Congress Catalog Card o.

Published by:

* LIBE COMPANY
P. 0 . BOX 1196
LOS ALTOS, CALIFOR IA 94022

0317

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

ii

This book is for those who need a thorough basic discussion of digital computers and the
binary number system. It is intended as a key to unlock the door to a fascinating world of
the electronic computer circuits! I

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

iii

TABLE OF CONTENTS

1 INTRODUCTION

2 LOGIC OPERATIONS, NOTATION, AND SYMBOLISM
2. 1 "AND" LOGIC OPERATION
2. 2 "OR" LOGIC OPERATION
2. 3 "SUM" LOGIC OPERATION
2. 4 "EOR" (EXCLUSIVE "OR") LOGIC OPERATION
2. 5 "NAND" LOGIC OPERATION
2. 6 "NOR" LOGIC OPERATION
2. 7 FACTUAL EXAMPLES - THE BOOLEAN APPROACH
2. 8 BINARY NUMBER "FACT" REPRESENTATION
2. 9 LOGIC PARENTHESES AND BRACKETS

3 FUNDAMENTAL LOGIC THEOREMS, LAWS, AND IDENTITIES
3 . 1 DEMORGAN'S THEOREMS
3. 2 COMMUTATIVE LAWS
3. 3 ASSOCIATIVE LAWS
3. 4 DISTRIBUTIVE LAWS
3. 5 FUNDAMENTAL IDENTITIES
3. 6 NEGATION AND DOUBLE NEGATION
3 . 7 SPECIAL IDENTITIES
3. 8 ADDITION IDENTITIES

4 TRUTH TABLES
4.1 LOGIC OPERATOR TRUTH TABLE REPRESENTATIONS
4. 2 PROOF OF DEMORGAN'S THEOREMS BY TRUTH TABLES
4. 3 PROOF OF DISTRIBUTIVE LAWS BY TRUTH TABLES
4.4 PROOF OF FUNDAMENTAL IDENTITIES BY TRUTH TABLES
4. 5 PROOF OF ADDITION IDENTITIES BY TRUTH TABLES

5 ELECTRONIC COMPUTER LOGIC NOTATION
5. 1 EXAMPLES OF ELECTRONIC COMPUTER LOGIC EXPRESSIONS

6 THE BINARY NUMBER SYSTEM
6. 1 TRUTH TABLES AND THE BINARY COUNT
6. 2 BINARY ADDITION
6. 3 BINARY SUBTRACTION
6.4 BINARY MULTIPLICATION
6. 5 BINARY DIVISION
6. 6 BINARY FRACTIONALS
6. 6. 1 CONVERSION FROM DECIMAL FRACTIONALS TO BINARY FRACTIONALS
6. 6. 2 CONVERSION FROM BINARY FRACTIONALS TO DECIMAL FRACTIONALS
6. 7 BINARY FRACTIONS
6. 8 SQUARE ROOTS
6 . 8. 1 EXTRACTING THE SQUARE ROOT
6. 8. 2 THE BINARY SQUARE ROOT
6. 9 ROUNDING "UP" AND ROUNDING "DOWN"
6. 9.1 BINARY "ROUNDING OFF"
6. 10 THE BINARY COMPLEMENT

7 BINARY ELECTRONIC COMPUTER CffiCUITS
7.1 THE FLIP-FLOP
7. 2 THE PULSE GENERA TOR
7. 3 LOGIC GATES
7. 3. 1 THE "AND" GA TE
7.3.2 THE "OR" GATE

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

iv

7.3.3
7.3.4
7. 3. 5
7.3. 6
7. 3. 7
7.4

8
8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.4
8.5
8.6
8. 7
8. 8

9
9.1
9.2
9.3
9.4
9.5
9.6
9.7

10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.11. 1
10.11.2
10.11. 3
10.11.4
10. 11. 5
10.11. 6
10.11. 7
10. 12
10.12.1
10.13
10. 14

TABLE OF CONTENTS (Continued)

THE 11AND11 AND 11OR11 GA TE
NEGATIVE 11AND11 AND 11OR11 GA TES
THE 11EXCLUSIVE OR11 GATE (11 EOR" GATE)
THE "SUMMA TION11 GATE (11SUM11 GATE)
THE "INVERTER" GATE ("NOT" GATE)
GATE OUTPUT I TRIGGERING" AND DffiECT DISPLAY

ELECTRONIC COMPUTER CffiCUIT OPERATION
CAUTIONS! 11 I
PHYSICAL LAYOUT, MOUNTING, AND CONNECTIONS
MOUNTING BOARDS
WIRES
LABELS
LOGIC DIAGRAMS AND WIRING
POWER PIN CONNECTIONS
POWER SOURCES
SENSES AND COMMANDS
SET AND RESET
INTRINSIC PROBLEMS AND DEBUGGING
CARE AND REPAIB OF UNITS

BASIC NON-GATED COMPUTER PROJECTS
THE BINARY "UP" COUNTER
THE BINARY 11DOWN 11 COUNTER
THE BINARY SHIFT REGISTER (LEFT)
THE BINARY SHIFT REGISTER (RIGHT)
THE COMPLEMENTARY TRANSFORMATION REGISTER
THE NON-GATED BINARY ADDER
THE NON-GATED BINARY SUBTRACTER

ADVANCED COMPUTER PROJECTS
THE BINARY CODED DECIMAL (BCD) COUNTER
THE LOGIC ADDER
THE LOGIC SUBTRACTER
THE SHIFT ADDER
"SAMPLE-AND-HOLD" LOGIC
GATED "UP-DOWN" COUNTER
THE FULL-LOGIC BINARY MULTIPLIER
THE CUMULATIVE-ADDITION MULTIPLIER
THE DIVIDER
THE SQUARE ROOTER
COMPARATORS
THE "GREATER THAN" COMPARATOR
THE "LESS THAN" COMPARATOR
THE "EQUAL TO" COMPARATOR
THE "UNEQUAL TO" COMPARATOR
THE "GREATER THAN OR EQUAL TO" COMPARATOR
THE "LESS THAN OR EQUAL TO" COMPARATOR
GENERAL COMPARISON
THE TIME MACHINE
THE TIME MACHINE CLOCK
ELECTRONIC DICE
THE BINARY-TO-DECIMAL DECODER

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

V

TABLE OF CONTENTS (Continued)

11 UNLIMITED HORIZONS

12 GLOSSARY

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

1

1. INTRODUCTION

This book represents an original new basic approach to computer logic to communicate
the enjoyment of this vast field to the beginning experimenter . By making repeated use of
only four simple LIBE•electronic circuits, the computer hobbyist can derive great satisfac­
tion from building up the many projects described in this text. These four circuits are the
basic keys to the world of the computer I

The logic symbolism used in the text was not chosen to totally agree with that used in
other publications, but to communicate basic concepts to the reader . The notation and
symbolism contained herein will be used for all future LIBE literature, papers, and dis­
cussions on computer logic and circuits.

All information is presented in a direct manner for use as a textbook or handbook
reference. The reader is further encouraged to seek out other books after becoming fam­
iliar with the contents of this publication. Readers partially familiar with some of the
material in this book may skip over to the sections which are of interest .

• T.M.

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

2

2. LOGIC OPERATIONS, NOTATION AND SYMBOLISM

Logic is the SCIENCE OF REASONING. In other words, a set of FACTS are used to
reason out a CONCLUSION. The computer logic GATE uses these facts (INPUTS) and
determines a conclusion (OUTPUT).

The logic functions discussed here are: 11AND11 , 11OR11 , 11SUM11 , "EOR11 , "NAND",
and "NOR". Discussion of this section is limited to logic functions only. Section 7 con­
tains an intensive discussion on gates.

LOGIC NOTATION consists mainly of the 11dot11 (•), the 11wedge11 {v), the "plus" (+),
the 11triangle11 (v), the "equal'' (=), and the overhead 11bar11 (-). The first five symbols
will be referred to, throughout the rest of this book, as LOGIC OPERATORS. Parentheses,
brackets, braces, and overhead bars are used to group together specific parts of logic
expressions. The "equal1' sign denotes logical equality. The overhead 11bar" is used to
denote a 11 FALSE" logic FACT which is opposite to the corresponding "TRUE" fact. The
entire expression contained under an overhead "bar" is "FALSE''. Examples are:

A = "not" A

B = "not" B

A· B ·C = "not" (A and Band C)

2. 1 "AND" LOGIC OPERATION

"AND" logic operation is denoted by the "dot" (·). We denote the "AND" operation on
four facts (A, B, C, D)* as follows:

A-B·C·D

If we consider the above expression "A and B and C and D", we draw the following
conclusion: If and only if all facts are "TRUE", then the conclusion is "TRUE". If one
or more facts are "FALSE", then the conclusion is "FALSE". Examples are:

A· B ·C ·D = conclusion (TRUE)

A- B ·c ·D = conclusion (FALSE)

A· B ·C ·D = conclusion (FALSE}

A- B ·C·D = conclusion (FALSE}

The "AND" operation, in effect, answers the question: "Are all the facts 'TRUE'?"

2. 2 11OR11 LOGIC OPERATION

"OR11 logic operation is denoted by the "wedge" (v). We denote the "or" operation on
four facts (A, B, C, D) as follows:

AvBvCvD

If we consider the expression "A or B or C or D1' above, we draw the following
conclusion: If and only if all facts are "FALSE", then the conclusion is "FALSE". If one
or more facts are "TRUE", then the conclusion is "TRUE". Examples are:

*Each letter A, B, C, D stands for a specific fact.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

2. 2 "OR" LOGIC OPERATION (Continued)

AvBvCvD = conclusion (FALSE)

AvBvCvD = conclusion (TRUE)

AvBvCvD = conclusion (TRUE)

AvBvCvD = conclusion (TRUE)

3

The "OR" operation, in effect, answers the question: "Is at least one fact 'TRUE'?"

2. 3 "SUM" LOGIC OPERATION

The "SUM" logic operation is denoted by the "plus" (+) . We denote the "sum" opera­
tion on four facts (A, B, C, D) as follows:

A+B+C+D

If we consider the expression "A plus B plus C plus D11 above, we draw the following
conclusion: If and only if an odd number of facts are "TRUE" , then the conclusion is
"TRUE". If an~ number of facts are "TRUE", then the conclusion is "FALSE". The
conclusion, in this case, may be considered the PARITY (the condition of being even or
odd) of "TRUE" facts. The conclusion depends only on an even or odd number of "TRUE"
facts. Examples are:

A+B+C+D = conclusion (FALSE)

A+B+C+D = conclusion (TRUE)

A+B+C+D = conclusion (FALSE)

A+B+C+D = conclusion (TRUE)

A+B+C+D = conclusion (FALSE)

A+B+C+D = conclusion (FALSE)

The "SUM" operation, in effect, answers the question: "ls the number of 'TRUE'
facts odd ? "

2. 4 "EOR" (EXCLUSIVE "OR") LOGIC OPERATION

The "EOR" logic operation is denoted by the "triangle" (v). We denote the "eor"
operation on four facts (A, B, C, D) as follows:

AvBvCvD

If we consider the expression "A eor B eor C eor 0" above, we draw the following
conclusion: If and only if just~ fact is "TRUE", then the conclusion is "TRUE".
However, if all facts are "FALSE 11 , or more than one fact is "TRUE" , then the conclusion
is 11 FALSE11 • Examples are:

AvBvCvD = conclusion (FALSE)

AvB'ICvD = conclusion (TRUE)

AvBvCvD = conclusion (TRUE)

AVBvCvD = conclusion (FALSE)

AvBvCvD = conclusion (FALSE)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

4

2. 4 "EOR" (EXCLUSIVE "OR") LOGIC OPERATION (Continued)

The "EOR" operation, in effect, answers the question: "Is there only~ 'TRUE'
fact?"

2. 5 "NANO" LOGIC OPERATION

11NAND11 logic is simply the negative of "AND" logic operation. "NAND" logic opera­
tion is denoted by a "dot" and an overhead "bar" across the entire expression. The "NANO"
operation on four facts is denoted as follows:

A-B·C·D

If we consider the above e.xpression "not (A and Band C and 0)'1, we draw the following
conclusion: If and only if all facts are "TRUE", then the conclusion is "FALSE". If one
or more facts are "FALSE", then the conclusion is "TRUE 11". Examples are:

A- B ·C ·D = conclusion (FALSE)

A· B ·C ·D = conclusion (TRUE)

A· B ·C ·D = conclusion (TRUE)

A· B -C -D = conclusion (TRUE)

The "NANO" operation, in effect, answers the question: "Is at least one fact
'FALSE'?"

"NAND" is a combination of the two words "NOT AND". Further discussion of this
11negativet1 logic will be held to a minimum because the positive "AND" logic is easier to
explain. "NAND'' logic permits the use of simpler electronic gate circuitry.

2. 6 "NOR'' LOGIC OPERATION

"NOR" logic is simply the negative of 110R11 logic operation. "NOR" logic operation
is denoted by a "wedge" and an overhead "bar" across the entire expression. The "NOR"
operation on four facts is denoted as follows:

AvBvCvD

If we consider the above expression "not (A or B or C or D), we draw the following
conclusion: If and only if all facts are "FALSE", then the conclusion is "TRUE". If one
or more facts are "TRUE", then the conclusion is "FALSE". Examples are:

AvBvCvI5 = conclusion (TRUE)

AvBvCvD = conclusion (FALSE)

AvBvCvD = conclusion (FALSE)

AvBvCvD = conclusion (FALSE)

The "NOR" operation, in effect, answers the question: "Are all facts 'FALSE' ? 11

"NOR" is a combination of the two words "NOT OR". Further discussion of this
"negative" logic will be held to a minimum because the positive "OR" logic is easier to
explain. "NOR" logic permits the use of simpler electronic gate circuitry.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

5

2. 7 FACTUAL EXAMPLES-THE BOOLEAN APPROACH

The BOOLEAN APPROACH to logic is to impose the condition that all logic statements,
reasons, conclusions, facts, etc., are either 11TRUE 11 or "FALSE". There are no con­
ditional steps between "TRUE" and 11 FALSE11 •

ow, instead of using just letters, let us assign some statements of fact to the letters
A, B, C, and D.

A: Arizona is in the United States.
B: Boston is in New York.
C: California is on the West Coast.
D: De.over is in Colorado.

ow, through research, suppose we determine that A is 11TRUE 11 , Bis "FALSE", C is
"TRUE", and D is "TRUE". We would have to replace 11B11 for statement (fact) "B" to
denote that it is "FALSE".

Consider: A· B · C · D = conclusion (FALSE). The conclusion represents a decision on
the collection of information about the United States. A "FALSE" conclusion for the "A 0 11

function means that not all the facts are "TRUE".

Now consider: AvBvCvD == conclusion (TRUE). A "TRUE" conclusion for the "0R1'

logic function means that one or more facts are 11 TRUE 11 •

Consider: A+B+C+D = conclusion (TRUE). A "TRUE 11 conclusion for the 11SUM11 logic
function means that an odd number (either 1 or 3 in this case) of facts are "TRUE".

Consider : AvBvCvD = conclusion (FALSE). A "FALSE11 conclusion for the 11 EOR11

logic function means that more than one fact or none of the facts are "TRUE".

It can be seen from the above examples that logic operations are basic tools for making
decisions and evaluations about a group of facts without really knowing the details and/ or
validity of each fact. The CONCLUSION represents a specific decision or evaluation. In
the examples above, the statement and validity of each fact was noted for reference only.
The CONCLUSION is also of a more general nature and it is not usually possible to use
CONCLUSION information to derive information about a specific fact. Note the "FALSE"
conclusion for the "AND" operation on the four facts. Noting the conclusion, we know that
not all facts are "TRUE". However, it is not possible to tell from this conclusion exactly
which facts are "TRUE" and which are "FALSE". The same holds true for all the other
logic operations .

2. 8 BINARY NUMBER "FACT" REPRESENTATION

The BINARY number system is a number system with 2 as the number base. A
BINARY NUMBER can be only a 11 111 or a "0". Since a computer only "sees" a 111 11 or a
11011 , we will employ these two numbers to represent the validity of facts as follows:

111" = "TRUE 11

110" = "FALSE"

The above numerical representations will be used wherever possible.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

6

2. 9 LOGIC PARENTHESES AND BRACKETS

Logic PARENTHESES and BRACKETS are very important because they keep the logic
I

statement clear when an expression can be interpreted more than one way. Consider the
following example:

AvB·C

What does the above expression mean? Is it the quantity A "OR" B, "AND" C? Or is
it A "OR" the quantity B "AND" C? These two expressions are not logically equivalent, as
can be seen from the "truth table" method of proof in chapter 4. (The reader can verify
this.) In order to clear up this confusion, we must use PARENTHESES to represent the
two different expressions respectively:

(1) (AvB)· C

(2) Av(B· C)

It is very important that parentheses be used when confusion can occur. In some
cases, where the Associative Law (see chapter 3) holds for certain expressions, the par­
entheses may be left out. Example: (AvB)v ((CvD)vE] = AvBvCvDvE. If more than one
set of parentheses is needed in the same expression, then various forms of different
brackets may be used such as: tr[] "or" { }" or 11

() "· Consider the following example:

(A+B)+C = { ((A· B)v(A· B)]-C} v { (A· B)v(A· B) · C}

When simplifying expressions such as above, the ASSOCIATIVE LAWS will be used
(chapter 3) to clear the parentheses.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

7

3. FUNDAMENTAL LOGIC THEOREMS, LAWS, AND IDENTITIES

The fundamental theorems, laws, and identities presented here are the necessary
"tools11 for all logical manipulations and problem work. Each group is classified together
with a brief explanation followed by a tabulated presentation. These logical equalities
should be referred to when necessary and will be referred to in this text by their corres­
ponding identification numbers on the right.

3.1 DEMORGAN'S THEOREMS

The two expressions called "DeMorgan's Theorems" are the most important laws for
computer logic. They define the relationship between the "AND" and "OR" logic operations.

The fi.rst theorem defines the negative of a group of "AND" logic facts to be equal to
the corresponding group of "OR" of the negatives of these respective logic facts.

The second theorem defines the negative of a group of "OR" logic facts to be equal to
the corresponding group of "AND" of the negatives of these respective logic facts.

Specific examples for two facts A, Bare:

- -A·B = AvB

~ = A•B

For 3 facts A, B, C we have:

A· B •C = AvBvC

AvBvC = A· B •C

For 4 facts A, B, C, D we have:

A· B .c -D = AvBv~vn

AvBvCvD = A· ff.(!.])

3. 2 COMMUTATIVE LAWS

(DM #1)

(DM # 2)

(DM #3)

(DM #4)

(DM #5)

(DM #6)

The commutative laws refer to the order of the logic facts. To commute logic facts
means to change the order of either two or more facts. Note that equality holds for the
four logic operators discussed in thi s book.

Specific examples for 2 facts A, B are:

A·B = B·A

AvB = BvA

A+B = B+A

AvB = BvA

For 3 facts A, B, C we have:

A-B·C = A·C·B = B·A·C = B·Clt\ = C·A·B = C·B·A

AvBvC = AvCvB = BvAvC = BvCvA = CvAvB = CvBvA

A+B+C = A+C+B = B+A+C = B+C+A = C+A+B = C+B+A

AvBvC = AvCvB = BvAvC = BvCvA = CvAvB = CvBvA

(CL #1)

(CL #2)

(CL #3)

(CL #4)

(CL #5)

(CL #6)

(CL #7)

(CL #8)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

8

3. 3 ASSOCIATIVE LAWS

The associative laws refer to the grouping of logic facts. The use of logical paren­
theses, brackets, and the overhead bar are very important in order to show the grouping
of logic facts. As there is only one way to group two facts, we must start with three.
Note that three facts can be grouped by two's, or as a single group of three. Note the
inequality (i) for the "EOR" operator (V).

Specific examples for 3 facts A, B, C are:

A· (B · C) = (A· B) · C = A· B · C

Av(BvC) == (AvB)vC = AvBvC

A+(B+C) = (A+B)+C = A+B+C

Av(BvC) = (AvB)vC f. AvBvC

3.4 DISTRIBUTIVE LAWS

(AL #1)

(AL #2)

(AL #3)

(AL #4)

The distributive laws define "logical multiplication. 11 This term is used because of
the analogy to numerical multiplication. Consider the following numerical example:

2x(3+4) = (2x3)+(2x4)

Note the position of the "times" sign (x) and the "plus" sign on both sides of the
equality. In "logical multiplication" we replace the "times" sign and "plus" sign with a
logic operator. However, the respective positions of the logic operators must be the same
as the corresponding "times" and "plus" signs. (Note: numerical "plus" and logic "plus"
signs should not be confused.) The quantity to the right of the "equal" sign is the distribut­
ed expression, while the quantity to the left is the "factored" expression. We need at least
three logic facts in order to form a 11distributed" expression. The twelve examples shown
for the three logic facts A, B, C show all the possibilities with the four logic operators
used in this book. Note that only the first four examples are an equality. The distributive
law does not hold for the other eight expressions, hence the inequalities (=I-).

Specific examples for 3 facts A, B, Care:

A· (BvC) = (A· B)v(A· C)

A· (B+C) = (A· B)+(A · C)

A· (BvC) = (A· B)v(A · C)

Av(B· C) = (AvB) · (AvC)

Av(B+C) /: (AvB)+(AvC)

Av(BvC) / (AvB)v(AvC)

A+(B· C) f (A+B)· (A+C)

A+(BvC) '/: (A+B)v(A+C)

A+(BvC) f (A+B)v(A+C)

Av(B· C) f (AVB)· (AVC)

Av(BvC) ,= (AvB)v(AvC)

Av(B+C) /= (AvB)+(AvC)

(DL #1)

{DL #2)

(DL #3)

(DL #4)

(DL #5)

(DL #6)

(DL # 7)

(DL #8)

(DL #9)

(DL #10)

(DL # 11)

(DL # 12)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

9

3. 5 FUNDAMENTAL IDENTITIES

The fundamental identities define the relationship between two logic quantities.
Either or both of the quantities may be a logic fact (indicated by the letter A), its converse
("not A 11 , or A), the number "l", or the number "011 • Note that the "plus11 {+) and
"triangle" (v) operators are the same for two logic quantitie s. The interrelationship
be tween logic facts and binary numbers is shown here.

A'A = A {FI *1) A+A = 0 (FI #33)
A·A = 0 {FI # 2) A+A = 1 {FI #34) -
A· 1 = A (FI # 3) A+l = A (FI #35)
A-0 = 0 (FI # 4) A+0 = A (FI #36)
A·A = 0 (FI # 5) A+A = 1 (FI #37)
A· A = A (FI # 6) - - (FI #38) A+A = 0 - -

(FI # 7) A+l = A (FI #39) A-1 = A
A·O = 0 {FI # 8) A+0 = A (FI # 40)
l ' A = A {FI # 9) l+A = A (FI #41)
l·A = A {FI #10) l+A = A (FI #42)
l· l = 1 {FI # 11) l +l = 0 (FI 1 43)
l· 0 = 0 {FI 1 12) l +0 = 1 {FI #44)
O·A = 0 {FI #13) 0+A = A {FI #45) - -0·A = 0 {FI 1 14) 0+A = A {FI 146)
0· l = 0 (FUH S) 0+l = 1 (FI #4 7)
o· o = o {FI 1 16) 0+0 = 0 (FI #48)

AvA = A {FI #17) AvA = 0 {FI #-49)
AvA = 1 {FI #18) AvA = 1 {FI #- 50)
Avl = 1 {FI #- 19) Avl = A {FI #- 51)
Av0 = A {FI #- 20) Av0 = A {FI #- 52)
AvA = 1 {FI # 21) AvA = 1 {FI #53)
AvA == A {FI #22) AvA. = 0 (FI # 54)
Avl = 1 {FI # 23) Avl = A (FI # 55)
Av0 = A (FI # 24) AvO = A (FI # 56)
lvA = 1 (FI # 25) lvA = A {Fl # 57)
lvA = 1 (FI # 26) lvA = A (FI # 58)
lvl = 1 (FI # 27) lvl = 0 (FI #59)
lv0 = 1 (Fl # 28) lv0 = 1 (FI # 60)
0vA = A (FI # 29) 0vA = A (FI # 61)
0vA = A (FI #30) 0vA = A (Fl # 62)
0vl = 1 (FI #31) 0vl = 1 {FI # 63)
0v0 = 0 {FI #32) ovo = 0 (FI # 64)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10

3. 6 NEGATION AND DOUBLE NEGATION

Simple negation employs the use of the overhead "bar" to denote "not A" when placed
over logic fact A. This quantity (A) is called the "negative of A", the "converse of A", or
the "invert of A".

Double negation means to invert A twice, or to invert the negative of A (A). However,
if we invert a "negative", it returns to a "positive". Thus, the law of double negation is
written as follows:

A = A (DN #1)

3. 7 SPECIAL IDENTITIES

Logic identities other than those in the preceding categories are listed here.

The first is the equality of the "eor" and "sum'' for two quantities. This is expressed
as follows:

A+B = AvB

For 3 quantities A, B, C we must use parentheses as follows:

A+B+C = Av(BvC) = (AvB)vC

For 4 quantities A, B, C, D we must use parentheses as follows:

A+B+C+D = (AvB)v(CvD)

For 5 quantities A, B, C, D, Ewe must use parentheses as follows :

A+B+C+D+E = ((AvB)v(CvD)] vE = (AvB)v ((CvD)vE] =

(CvD)v [(AvB)vE]

3. 8 ADDITION IDENTITIES

The most important addition identities for 2 quantities {A, B) are:

S = A+B = (A· B)v(A· B)

S = A+B = (AvB)· (AvB)

(SI #1)

(SI #2)

(SI #3)

(SI #4)

(AI #1)

(AI #2)

These expressions will be used throughout the book to expand and simplify logic
expressions.

The following addition identities are entered in this section for reference only. They
will be further discussed in chapter 10. Note how complicated the expressions become as
the number of logic quantities increases.

"S" means "SUM"

11C1
11 means "CARRY-ONE"

"C " means "CARRY-TWO"
2

The above notation will be explained later.

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

3. 8 ADDITION IDENTITIES (Continued)

For 2 quantities A, B:

S = A+B = AvB

S = (A· B)v(A· B)

S = (AvB)" (AvB)

c1 = A-B

For 3 quantities A, B, C:

S = A+B+C

S = (A· B ·C)v(A· B ·C)v(A· B ·C)v(A· B •C)

c1 = (A· B)v(A· C)v(B •C)

For 4 quantities A, B , C, D:

S = A+B+C+D
- - - -

S = (A· B ·C ·D)v(A· B ·C ·D)v(A· B ·C ·D)v(A· B ·C ·D)v

(A· B ·C ·D)v(A· B ·C ·D)v(A· B ·c ·D)v(A· B ·c ·D)
- - - - -c1 = (A· B ·D)v(A· C ·D)v(A· C ·D)v(A· B ·D)v(A· B ·C)v

(A· B ·D)v(A· C ·D)

c2 = A·B·C·D

For 5 quantities A, B, C, D, E:

S = A+B+C+D+E

S = (A· B ·C ·D·E)v(A· B ·C ·D·E)v(A· B ·C ·D·E)v

(A· B ·C ·D ·E)v(A· B ·C •D •E)v(A· B -C •D ·E)v
- - - - - -

(A· B ·C -D ·E)v(A· B ·C -D-E)v(A· B -C ·D ·E)v
- - ----

(A· B-C -D·E)v(A· B ·C ,D .E)v(A. B -C-D-E)v
- - - - - - --

(A· B ·C ·D ·E)v(A· B -C ,D ,E)v(A· B -C -D -E)v
- ---(A·B-C-D-E)

C = (A· B ·C ·D)v(A· C ·D ·E)v(A· C ·D ·E)v(A· B ·C ·E)v
1 - - -

(A· B ·C ·D)v(A· B ·C ·D)v(A· B ·D •E)v(A· B ·C ,D)v
- - -

(A· B ·C •E)v(A· C ·D ·E)v (A· C ·D ·E)v(A· B ·C ·D)v

(A- B-C ·E)
C = (A- B ·C ·D)v(A· B ·C ·E)v(A· B ·D·E)v(A- C ·D ·E)v

2
(B·C ·D·E)

(AI #3)

(AI #4)

(Al # 5)

(AI # 6)

(Al #-7)

(AI #8)

(AI #9)

(AI 4#10)

(AI # 11)

(Al #12)

(Al #13)

(AI 4#14)

(AI # 15)

(Al #16)

(AI #17)

11

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12

4. TRUTH TABLES

The truth table is a tabular representation of a logic expression and facts which
indicates all possibilities of "TRUE" and 11FAISE11 • The 111 11 will be used to denote the
"TRUE" possibility and the "0" will denote the "FALSE" possibility. The relationship
between 11TRUE11 and "FALSE" logical facts has now become more complex. Now the
fact A is undefined as to whether it is "TRUE" or "FAI..SE'' and may be either. A can
also be "TRUE'' if "A" is "FAI..SE". The relationship that does hold is that no matter
whether A is assumed to be "TRUE" or "FALSE", A must always be assumed the opposite.

To set up a table, we must count the number of logic FACTS present (that is, A, B,
C, D, E, etc.}. If there are 3 facts present, then we must calculate 23 . Since 23 = 8,
we will have 8 possibilities, half of which are 11 111 and half of which are "0". For the
first fact, the possibilities are divided up: 4 110 1s 11 and 4 "l's". For the second fact, the
possibilities are alternately divided up: 2-2-2-2. The third fact has alternate "l's" and
"O's".

As examples, truth tables will be used to prove some of the identities in chapter 3.

4. 1 LOGIC OPERA TOR TRUTH TABLE REPRESENTATIONS

Truth table representations are shown for two facts A, Band three facts A, B, C for
the four logic operators (· , v, + , v}. In addition, the "negation" truth tables are shown
for one fact A, two facts A, B, and three facts A, B, C.

The representations for 2 quantities are as follows:

A B A·B AvB A+B AvB X B

0 0 0 0 0 0 1 1

0 1 0 1 1 1 1 0

1 0 0 1 1 1 0 1

1 1 1 1 0 0 0 0

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

13

4.1 LOGIC OPERATOR TRUTH TABLE REPRESENTATIONS {Continued)

For 3 quantities we have:

- - -A B C A·B•C AvBvC A+B+C (AvB)vC Av(BvC) AvBvC A B C

0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 0 1 1 1 1 1 1 1 0

0 1 0 0 1 1 1 1 1 1 0 1

0 1 1 0 1 0 0 0 0 1 0 0

1 0 0 0 1 1 1 l 1 0 1 1

1 0 1 0 1 0 0 0 0 0 1 0

1 1 0 0 1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 0 0 0 0

Truth tables for a greater number of facts (A, B, C, D, E) can be made up
from the definitions in chapter 2.

4. 2 PROOF OF DEMORGAN'S THEOREMS BY TRUTH TABLES

The proofs of DM #1, DM #2, DM #3, and DM 14 are illustrated by use of the following
truth tables. Note that the "1" and "0" sequence for the 11truth11 columns which represent
the quantity left of the 1'equal11 sign match exactly the 11 truth" column to the right of the
"equal" sign. Two or more quantities are logically equal if their "truth" columns match
exactly.

Consider the following:

A·B = AvB (DM #1)

- - -- - -A B A B A·B A-B AvB

0 0 1 1 0 1 1

0 1 1 0 0 1 l

1 0 0 1 0 1 1

1 1 0 0 1 0 0

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

14

4. 2 PROOF OF DEMORGAN'S THEOREMS BY TRUTH TABLES (Continued)

- --AvB = A·B (DM #2)

- - - - -
A B A B AvB AvB A·B -
0 0 1 1 0 1 1

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 1 0 0 1 0 0

A· B ·C = AvBvC (DM #3)

A B C A B C A·B·C A-B·C AvBvC

0 0 0 1 1 1 0 1 1

0 0 1 1 1 0 0 1 1

0 1 0 1 0 1 0 1 1

0 1 1 1 0 0 0 1 1

1 0 0 0 1 1 0 1 1

1 0 1 0 1 0 0 1 1

1 1 0 0 0 1 0 1 1

1 1 1 0 0 0 1 0 0

AvBvC = A· B· C (DM #4)

- - A·B•c A B C A B C AvBvC AvBvC

0 0 0 1 1 1 0 1 1

0 0 1 1 1 0 1 0 0

0 1 0 1 0 1 1 0 0

0 1 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 0

1 0 1 0 1 0 1 0 0

1 1 0 0 0 1 1 0 0

1 1 1 0 0 0 1 0 0

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

4. 3 PROOF OF DISTRIBUTIVE LAWS BY TRUTH TABLES

As examples, only 'DL #1 and DL #7 will be represented by truth tables. Note that
DL 1 7 is an inequality and that the 11truth" columns are different.

A· (BvC) = (A· B)v(A· C) (DL #1)

A B C (BvC) (A· B) (A· C) A· (BvC) (A· B)v(A· C)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 0 1 1 1

1 1 0 1 1 0 1 1

1 1 1 1 1 1 1 1

Since the last two "truth" columns match, the above distribution expression is a
proven equality.

Now consider the following inequality:

A+(B• C) I (A+B)· (A+C) (DL # 7)

A B C (B· C) (A+B) (A+C) A+(B· C) (A+B)' (A+C)

0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 0 1 1 0

1 1 1 1 0 0 0 0

15

Since the last two 11 trutb" columns do not match, the expressions are not equal and the
distributive law for this expression does not hold. Note that only the first four distributive
expressions (DL #1, DL # 2, DL #3, and DL #4) are equalities.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

16

4.4 PROOF OF FUNDAMENTAL IDE TITIES BY TRUTH TABLES

The truth table proofs of fundamental identities are very simple. A few examples are
shown in order to illustrate this fact.

A·A = A (Fl # 1) A· A = 0 (Fl # 2)

A A A·A A A A·A

0 0 0 0 1 0

1 1 1 1 0 0

A- 1 = A (FI #3) A· 0 = 0 (FI #4)

A 1 A-1 A 0 A-0

0 1 0 0 0 0

1 1 1 1 0 0

AvA = A (FI # 17) AvA = 1 (FUH S)

A A AvA A A AvA

0 0 0 0 1 1

1 1 1 1 0 1

Avl = 1 (FI # 19) AvO = A (FI # 20)

A 1 Avl A 0 1Av0

0 1 1 0 0 0

1 1 1 1 0 1

A+A = 0 (FI #33} A+A = 1 (Fl #34)

A A A+A A A A+A

0 0 0 0 1 1

1 1 0 1 0 1

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

17

4. 4 PROOF OF FUNDAMENTAL IDENTITIES BY TRUTH TABLES (Continued)

A+l = A (FI # 35) A+0 = A (FI #36)

A A 1 A+l A 0 A+-0

0 1 1 1 0 0 0

1 0 1 0 1 0 1

ATA = 0 (FI # 49) ATl = A (FI # 51)

A A AvA A A 1 Avl

0 0 0 0 1 1 1

1 1 0 1 0 1 0

4. 5 PROOF OF ADDITION IDENTITIES BY TRUTH TABLES

The proofs of the two important addition identities Al fH and Al # 2 are shown here.

A+B = (A· B)v(A· B) (AI # 1)

- B (A· B) (A· B) A+B (A· B)v(A • B) A B A

0 0 1 1 0 0 0 0

0 1 1 0 0 1 1 1

1 0 0 1 1 0 1 1

1 1 0 0 0 0 0 0

A+B = (AvB)· (AvB) (Al # 2)

- - (AvB) (AvB) A+B (AvB)· (AvB) A B A B

0 0 l 1 0 1 0 0

0 l 1 0 1 1 1 1

1 0 0 1 1 1 1 1

1 1 0 0 1 0 0 0

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

18

5. ELECTRONIC COMPUTER LOGIC OTATION

Up to this point, we have been discussing only pure logic operation on facts and con­
clusions . We will now relate this logic to electronic gate circuits. The 5 types of gates
discussed here are: "AND", "OR", "SUM", 11EOR11 , and "INVERTER".

Inputs to these gates are supplied by electronic FLIP-FLOP circuits (see chapter 6).
The following table relates the written logic sy111bol with the electronic gate symbols.
This table should be referred to when necessary.

WRITTE ELECTRONIC LOGIC
LOGIC GATE OPERATION

SYMBOL SYMBOL DEFINITION

. IIDQT" D "AND"

v "WEDGE" t> "OR"

+ "PLUS11 D "SUM"

• "TRIANGLEH l> "EXCLUSIVE OR"

- 0 "BAR" "INVERT" ("NOT")

A 0 A·B A-B A "AND" B
B

A t> AvB AvB A "OR" B
B

A D A+B A+B A "SUM" B
B

A

~ AvB AvB A "EOR" B
B

A A 0 A "NOT" A

B B 0 B "NOT" B

A =0-A"B
B

A·B "NOT" (A "AND" B)

AvB : ==t>e-- AvB "NOT" (A "OR II B)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

19

5. 1 EXAMPLES OF ELECTRONIC COMPUTER LOGIC EXPRESSIONS

Consider the expression (A· B)v(A· B). The "gate" representation is as follows:

A·B
(A· B)v(A· B) (AI #1)

Now consider the expression (AvB)· (AvB). The "gate" representation is as follows:

AvB
(AvB)· (AvB)

AvB

The complicated expression AI #8 is represented as follows:

A

B
C

A

B
C

A

B
C

A·B·C

A·B•C

A·B-C

(A· B· C)v(A·B· C}v
(A· B· C)v(A · B· C}

(AI #2}

(AI #8)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

20

6. 0 THE BINARY NUMBER SYSTEM

This simple number system must be understood before the value of the binary digital
computer can be appreciated. In this system, we have only 11 l 's'' and "0 1s 11 • The logical
equivalents are:

1'1 1' = TRUE

"0" = FALSE

Now let us illustrate binary counting. The binary column farthest to the right is called
the "l's" colwnn. The next one over to the left is the "2's" column, then the "4's'' column,
"S's" column, etc. The column heading is used to identify the binary numbers in terms of
our own common decimal system (1, 2, 3, 4, 5, 6, 7, 8, 9, 0). Starting from the "1' s"
column, the column heading numbers are doubled as we go to the adjoining left column. In
converting a binary number back to our own system, we note the column headings under
which there is a binary 11 111 • If there is a binary "1" , we add the column heading number;
if there is a binary 0, we ignore the column heading number. Note also that powers of 2
are : 2° = l; 21 = 2; 22 = 4; 23 = 8; 24 = 16; 26 = 32; 26 = 64; etc . The column headings may
also be shown as powers of 2. Starting from the right (the 2° column), the "power of 2"
column heading will always be a power one less than the number of column positions over
from the right. For instance, the 6th column over would be the 25 column (25 = 2x2x2x2x2
= 32); the 10th column over would b the 29 column (29 = 2x2x2x2x2x2x2x2x2 = 512).

The table below shows a 11count" from 1 to 15, using the binary system. Note that a
fifth column (24 = 16) would be needed to represent the number 16.

BINARY COLUMN HEADING BINARY DECIMAL CONVERSION FROM
"8" 11411 "2" "l" NUMBER EQUIVALENT BINARY TO

23 22 21 20 DECIMAL

0 0 0 0 0 0 0+0+0+0

0 0 0 1 1 1 0+0+0+l

0 0 1 0 10 2 0+0+2+0

0 0 1 1 11 3 0+0+2+1

0 1 0 0 100 4 0+4+0+0

0 1 0 1 101 5 0+4+0+1

0 1 1 0 110 6 0+4+2+0

0 1 1 1 111 7 0+4+2+1

1 0 0 0 1000 8 8+0+0+0

1 0 0 1 1001 9 8+0+0+1

1 0 1 0 1010 10 8+0+2+0

1 0 1 1 1011 11 8+0+2+1

1 1 0 0 1100 12 8+4+0+0

1 1 0 1 1101 13 8+4+0+1

1 1 1 0 1110 14 8+4+2+0

1 1 1 1 1111 15 8+4+2+1

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

21

6. 1 TRUTH TABLES AND TH E BINARY COUNT

Note that for one fact A , two facts (A, B) , three facts (A, B, C) , and 4 facts (A, B , C,
D) , that the "truth table" representations represent nothing more than a binary count as
shown below:

rn
A B

0 0

0 1

A B C

0 0 0

0 0 1

1 0 0 1 0

1 1 0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

For one fact A, we count !:!E from "0" to
11 111 • For 2 facts (A, B), we count E.E, from
"00" to 1111 11 • For 3 facts (A , B, C) we
count .!:!.E from "000" to "111" . For 4 facts
(A, B , C, D) we cou nt.!:!_E from "0000" to
"1111". Note that for the invert ("not") of
A, B, C, and D, the binary count goes back­
wards, starting from 111 11 , "11", 11 111 11 , and
"1111" and ending up at "0", 1100", "00011 ,

and "0000", respectively . This can be seen
by interchanging the binary "l's" and "O's"
in the above "truth" tables .

6. 2 BINARY ADDITION

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

It is possible to perform addition with binary numbers . The rules are as follows:

Examples are :

O+O = O

0 + 1 == 1

1 + 0 == 1

1 + 1 == 0, carry 1

1 1 - "carries''-----~ 11 +-- "carries"
a . 1001

+1101
10110

b. 110
+111
1101

11111
c . 11101

+ 1011
101000

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

22

6. 2 BINARY ADDITION (Continued)

a.

Decimal system equivalents:

9
+13

22

6. 3 BINARY SUBTRACTION

b. 6
+7
13

We can perform binary subtraction by the following rules:

Examples are:

0 0 ..._ "borrows"
a. .to1.to

-1101
1001

Decimal system equivalents:

a. 22
-13

9

6. 4 BINARY MULTIPLICATION

0 - 0 = 0

0 - 1 = 1, borrow 1

1- 0 = 1

1-1 = 0

00 - 11borrows"
b. .t.to1

-111
110

b. 13
- 7

6

c.

c.

c.

29
+11

40

01011
.tf1.tf1f10
- 1011

11101

40
-11

29

Binary multiplication is performed like regular decimal number multiplication, except
that it simplifies down greatly. In the examples below, the top number (above the line) is
the MULTIPLICA D and the bottom number is the MULTIPLIER. Starting with the number
farthest right in the multiplier, we note whether it is a "0'' or 11111 • If it is 11011 , we write
nothing (or "0") and proceed to the next adjacent MULTIPLIER number to the left. If it is
a 1111', then we copy down the MULTIPLICAND exactly as is and be sure that the last
MULTIPLICAND digit to the right and the MULTIPLIER digit being used line up in the same
column. Repeat for each MULTIPLIER digit.

Consider the following examples:

a. 10110 b. 1101 C. 101000
X 1101 X 111 X 1011

10110 1101 101000
10110 1101 101000

10110 1101 101000
100011110 1011011 110111000

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

6. 4 BINARY MULTIPLICATION (Continued)

a.

Decimal system equivalents are:

22

~
6.6

22
286

b. 13
X 7

91

c. 40
xll

40
40
440

23

As can be seen from the above examples, once all the binary numbers are properly
lined up, the columns need only be added up to give the answer.

The general rules of binary multiplication are:

MULTIPLICAND

x MULTIPLIER

PRODUCT

6. 5 BINARY DIVISION

0x0 = 0

0xl = 0

lx0 = 0

1 X 1 = 1

(MULTIPLICAND x MULTIPLIER = PRODUCT)

Binary division is very similar to ordinary decimal division, except that it is much
simpler. The REMAINDER must be closely observed. Starting with the left binary
DIVIDEND digit, we continue over to the right until we have enough binary numbers
(reach enough "places") to start the division process to obtain a QUOTIENT (or answer).
If the division can continue into a fractional answer, we use a binary fractional point, or
BINARY POINT (.) , which is the same as the decimal fractional point (DECIMAL POINT)
to denote the binary fractional.

When we start the division process, we place a "1" above the DIVIDEND binary digit
farthest to the right which yields a number large enough to start the division process.
Then we subtract the DIVISOR, being sure that the last binary DIVISOR digit is in the same
column as the "1" entered in the QUOTIENT (see examples). Then we "bring down" and
11tack on" to the REMAINDER the next binary digit from the DIVIDEND and see if we can
subtract the DIVISOR from the new REMAINDER. If we can not, then we write a "0" in the
next QUOTIENT digit position, "bring down" and "tack on 11 to the REMAINDER the next
binary DIVIDEND digit. Repeat this process until subtraction of DIVISOR from REMAINDER
can be performed. Then write a 11111 in the next QUOTIENT binary digit position, subtract,
and "bring down'' and ''tack on" the next DIVIDEND binary digit. Continue this process
until division is complete.

Consider the following examples:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

24

6. 5 BINARY DIVISION (Continued}

QUOTIENT
DIVISOR) DIVIDEND (DIVIDEND ..,.. DIVISOR = QUOTIENT)

11

a . 1101) 100111 "BRING DOWN"
- 1101 / REMAINDERS

110~ , I - 1101
0

111
c. 10001) 1110111

10001,__~
RE - ~ 11001 ''~RING DOWNS"
MAINDERS 10001 ,r ~r

01
0

Decimal system equivalents are:

3
a . 13) 39 b.

39
0

6. 6 BINARY FRACTIONAIB

11. 001001.
b. 111} 10110.

- 111_""
~-~ 1000 "BRING DOWNS" 111-!J 'T"---- 1000

111 -------,---- 1000

3.14
7) 22

21
10

7
30

- 28
2

- 111
l

c .
7

17) 119
119

0

The binary "FRACTIONAL11 is similar to the "DECIMAL" fractional representation of
our system. Consider the common 1T = 3 . 1416. The first 11111 represents 1/10 or 10-1.
The 114 11 represents 4/100 or 4 x 10-2. The second 11111 represents 1/1000 or 1 x 10-3, and
the "6" represents 6/10,000 or 6 x 10-4 . As we can see, we have the "tenths","hundredths",
"thousandths", and "ten-thousandths" positions to the right of the decimal point. Note that
the first position to the right of the decimal represents 10- 1 (1/101 , or 1/10), the second
position represents 10-2 (1/102 or 1/100), the third position represents 10-3 (1/103 or
1/1000) , the fourth position represents 10-4 (1/104 or 1/10, 000), and so on. Generally,
for 1'X" positions to the right of the decimal point, we have the 10-X position (1/loX or
1/100 00 with "X" number of O's in the denominator) .

The BINARY POINT denotes a BINARY FRACTIONAL and the only difference is that
for ''X" positions to the right of the BINARY POINT, we have 2-X (instead of 10-X) . Then
in terms of our decimal system, the first position to the right of the binary point represents
z-1 (1/21 or 1/2), the second position represents 2-2 (1/22 or 1/4) , the third position
represents z-3 (1/23 or 1/8), the fourth position represents 2-4 (1/24 or 1/16), and so on.

However, since "2" is represented as "10" in the binary system, the first position to
the right of the BINARY POINT becomes 10-l (1/101 or 1/10) , the second position becomes

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

6. 6 BINARY FRACTIONAI.S (Continued)

10-2 (1/102 or 1/10~4 the third position becomes 10-3 (1/103 or 1/1000), the fourth
position becomes 10 (1/104 or 1/10000), and so on. Note that in binary, 111011 = 2,
11100" = 4, "1000" = 8, 111000011 = 16, and so on. The simplicity about a BINARY
FRACTIONAL position is that it is either a 11111 or a 11011 and nothing else. In our own
decimal system, we may have any one of the numbers 1, 2, 3, 4, 5, 6, 7, 8, or 9 in a
given decimal fractional position.

Consider the following decimal and binary fractional equivalents:

DECIMAL BINARY

a. Tf = 3. 14159 = 11.0010010001

b. 1/2 = .5 ::: . 1
*

c. 1/3 = . 3 :f.31 •.••• = . 01010101'01'
*

d. 1/10 = . 1 = . 000110011ooTI

e. e = 2. 71828 = 10.101101111110

f. '12 = 1. 414 = 1. 0110101.

*The overhead bracket (,.....,) means that the portion within it is repeated over and over
indefinitely.

25

Note that some fractions are finite decimal fractionals, but infinite binary fractionals
as in example (d). An INFINITE fractional is one where the division of two finite numbers
goes on indefinitely and the numbers repeat in a given sequence. The overhead bracket
(,.....,) shows the repeating sequence. An ffiRA TIONAL fractional is a fractional which may
be carried out indefinitely, but has no repeating sequence. The fractionals for 1/3 (in the
binary and decimal systems) and 1/10 (in the binary system) are INFINITE, while the
fractionals for "Tf 1', 11e 11 and 11 -.J'211 are IRRATIONAL {both 11 71"" and "e" are widely used
mathematical constants either or both of which the reader may be familiar).

6. 6. 1 CONVERSION FROM DECIMAL FRACTIONAI.S TO BINARY FRACTIONAI.S

Consider a fractional already in the decimal form. To convert to the equivalent
binary fractional, we proceed as follows: The whole number to the left of the decimal
fractional point is converted into binary by the method described in 6. 0. We treat the
portion to the right of the decimal fractional point separately and multiply that number by
2. If the answer is less than 1, we write a 11 011 in a 11reference11 column to the left. If the
number is greater than 1, we remove the 11111 and bring it over to the "reference" column
and again multiply the rest of the fraction by 2 and repeat the process above. The multi­
plication by 2 can be carried out as far as one wishes. The "reference" column will then
contain the BINARY FRACTIONAL to the right of the BINARY POINT.

Consider again 3. 14159..... The 113" converts to binary "11". Now work with
11 • 14159 11 as follows:

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

26

6. 6. 1 CONVERSION FROM DECIMAL FRACTIONAI..S TO BINARY FRACTIONAI..S
(Continued)

REFERENCE
COLUMN

0

0

1

0

0

1

0

0

0

0

1

1

1

1

1

1

0

0

1

''FRACTIONAL''

. 14159
X 2

, 28318
X 2

. 56636
X 2

. 13272
X 2

. 26544
X 2

. 53088
X 2

. 06176
X 2

. 12352
X 2

. 24704
X 2

. 49408
X 2

. 98816
X 2

. 97632
X 2

. 95264
X 2

. 90528
X 2

. 81056
X 2

. 62112
X 2

. 24224
X 2

.48448
X 2

.96896
X 2

. 93792

Now, using the 111111 for the whole number part, and the "reference" column for the
fractional part, the decimal fractional 3. 14159 converts to the binary fractional
11.0010010000111111001

The decimal fractional 3.14159 has only 5 decimal fractional places. In order to
maintain this accuracy in a binary fractional, we must have roughly 3. 2 times as many
fractional places . Therefore, the binary equivalent for 3.14159 must have 5 x 3. 2, or
16 binary fractional digits computed to maintain the accuracy of 5 decimal fractional digits
(since 19 were computed, the accuracy is at least good as 5 decimal fractional digits) .

A second method of conversion is merely to subtract 1/2, 1/4, 1/8, 1/16 , etc.,
in decimal fractional form (. 5, . 25, .125, . 0625). Starting with . 5, we try to

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

6. 6. 1 CONVERSION FROM DECIMAL FRACTIONAI..S TO BlliARY FRACTIONAL5
(Continued)

subtract from the decimal fractional. If we~ subtract, a 11111 is entered for the first
binary fractional digit. If we can not subtract, then a binary 11011 is entered. Subtract

27

and repeat again for . 25, and so on. This method is very tiresome because the decimal
fractionals get very complicated as we calculate more and more binary fractionals. Also,
we need a table of decimal fractionals for 1/2, 1/4, 1/8, 1/16, ... etc. Now let us
convert 3. 14159. to a binary fractional by this method. Again, we convert the whole
number 11311 to binary 111111 by the method in section 6. 0. Then we proceed to work on the
decimal fractional as follows:

.14159

- .125
. 01659

- . 015625
.000965

- . 000489

0,
0,
1,

0,
0,
1,

0,
0,
0,
0,
1,

cannot subtract . 5
cannot subtract . 25
subtract . 125

cannot subtract . 0625
cannot subtract . 03125
subtract . 015625

cannot subtract . 0078125
cannot subtract . 00390625
cannot subtract . 001953125
cannot subtract . 0009765625
subtract .00048828125

TABLE OF DECIMAL FRACTIONAL5 FOR 2-X

X 2 -X

1 .5
2 . 25
3 .125
4 .0625
5 . 03125
6 • 015625
7 .0078125
8 . 00390625
9 .001963125

10 .0009765625
11 .00048828125
12 . 000244140625
13 .0001220703125
14 . 00006103515625
15 .000030517578125
16 .0000152587890625
17 .00000762939453125
18 .000003814697265625
19 .0000019073486328125
20 . 00000095367431640625

e have calculated eleven places above and 3. 14159 converts to
11. 00100100001. The reader can now see the difficulty in calculating out more
places.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

28

6. 6. 2 CONVERSION FROM BINARY FRA.CTIONALS TO DECIMAL FRACTIONALS

To convert back from BINARY FRACTIONALS t:o decimal fractionals, we may refer

t:o the 2-X table in 6. 6.1 and add up all the decimal fractional equivalents for the columns
which have a binary fractional digit of 11111 • For instance, t:o convert .11, we add up
. 5 + . 25 = . 75, which is relatively simple. Another example, . 1101 = . 5 + . 25 + . 0625 =
. 8125. However, the longer binary fractionals are more complicated t:o handle in this
manner.

The second method is that of multiplying the binary fractional by "1010" in binary and
moving over into a 11reference11 column all binary digits left of the binary point of the
resulting answer, leaving the remaining binary fractional for further multiplication by
binary "1010". We repeat this process until the desired number of decimal fractional
digits are obtained. Note that each "decimal fractional digit" will appear in binary form
in the reference column. A simple way to multiply by "1010" is to move the BINARY
POINT over one place, then add to this the same number with the BINARY POINT moved
over 3 places.

Consider our calculation of 11. 0010010000111111001. We treat this as follows:

''REFERENCE''
COLUMN

1

100

1

101

1000

1000

._s. 0 l 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1

+.O O 1.0 0 1 0 0 0 0 11 1 1 1 1 0 0 1 ____,..

__J._2,.110101 0 0 1 1 1 0 1 1 1 0 1

+.O 1 1.0 l O 1 0 0 1 1 1 0 1 1 1 0 1 ___.,.

1 0 {,2.0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1

+. 0 0 1. 0 1 0 0 0 1 0 1 0 1 0 0 0 1 -___Jl· o o 1 o 1 1 o 1 o o 1 o 1 o 1

+.l O 0.1 0 1 1 0 1 0 0 1 0 1 0 1 -
1 0 4-1- 1 1 0 0 0 0 1 1 1 0 1 0 0 1

+.l 1 1.0 0 0 0 1 1 1 0 l O O 1 -
1 0 0 4.}..- 1 0 1 0 0 l 0 0 0 1 1 0 1

+.1 1 0.1 0 0 1 0 0 0 1 1 0 1 ---
1 o o {~,. o 11 o 11 o o o o o 1

Now observe that the "reference column" indicates 6 positions of the decimal fractional
number and that these position numbers are in binary (1, 100, 1, 101, 1000, 1000). Now,
we must convert these binary numbers t:o decimal numbers by the method in section 6. 0 t:o
obtain 1, 4, 1, 5, 8, 8. The whole number to the left of the binary fractional point (11)
converts to 3. Therefore, the converted binary fractional is 3.141588 or, rounding up the
last 8, we have 3.14159.

While the above method is not simple, the first method is much more difficult for long
binary fractionals .

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

6. 7 BINARY FRACTIONS

The binary fraction number, like our own decimal fraction number, has both a
NUMERATOR and DENOMINATOR as shown below:

FRACTION = NUMERATOR
DENO MINA TOR

However, both the NUMERATOR and DENO MINA TOR are expressed in BINARY
instead of the decimal system. Consider the following examples:

a. 11
100

b. 1
11

c. 11
1000

d. 1001
10001

e. 1
10

The decimal fraction number equivalents of the above are:

a. 3/4 b. 1/3 c. 3/8 d. 9/17 e. 1/2

The use of binary fraction numbers is not as common as the binary FRACTIONAL
representation. In order to convert a binary FRACTION to a binary FRACTIONAL,
simply divide out the NUMERATOR by the DENOMINATOR.

6. 8 SQUARE ROOTS

29

The square root of a number is a second number which, when multiplied by itself,
yields back the first number. For example, the square root of 4 is 2 because 2 x 2 = 4.
The square root of 225 is 15 because 15 x 15 = 225. The above examples a·re relatively
easy because the numbers are exact. However, except for numbers which are perfect
"squares" (such as 1, 4, 9, 16, 25, 225, 1. 69, 5625, etc.) all other square roots are
mRA TIONAL fractionals in both decimal and binary systems. The "RADICAL'' (. ...r--)
is used to indicate that a square root must be extracted from a number. 11 V " is
read: 11the square root of 2. "

6. 8.1 EXTRACTING THE SQUARE ROOT

If the number is a whole number, we. must divide all the digits into groups of "two" by
use of the 1'spacer" mark (,.._) starting with the number at the extreme right. Any odd
digit left alone by the grouping process must occur at the extreme left. A number consist­
ing of one or two digits need not be grouped.

A fractional must be grouped in "twos" starting at the decimal point in which case an
odd digit would be left at the extreme right. Zeros may be added on to carry out the oper­
ation further. A zero may be added on a lone digit at the extreme right in order to complete
a grouping of 11two". Zeros may then be added on, two at a time, indefinitely.

A whole number may be made into a fractional by placing a decimal point at the
extreme right and by adding zeros in groups of "two'' (2 = 2. 001\00"00}. A fractional
which contains a whole number must be grouped in "twos11 starting at the decimal point
and proceeding to the right for the part to the right of the decimal point, and proceeding
to the left for the part to the left of the decimal point (3,..97 86. 48A73.r.51). The same
grouping rules apply to binary numbers.

Consider the square root of 1521. We group this number in "twos1' as follows and
insert a 11radical 11 over it: '1 15.,..21. To start the operation, we observe the group
farthest to the left, which is 15. We then determine which number is the largest square
less than 15. Considering the possibilities from 1 to 9, we have : 1 x 1 = ,!; 2 x 2 = _!;

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

30

6, 8.1 EXTRACTING THE SQUARE ROOT (Continued)

3 x 3 = ~i 4 x 4 = 16; 5 x 5 = 25; 6 x 6 = 36; 7 x 7 =- 49; 8 x 8 = 64; 9 x 9 = 81. The pre­
ceding information indicates that~ is the number we want (!! is too large). We subtract
9 from 15 and write {s: or 113", above the grouped "15" pair. The REMAINDER is 6
and we "bring down" the next pair of numbers {21) .

" L" LINE

3
✓ 15,..,.21

9

~

- SQUARE ROOT

- REMAINDER

To the left of the REMAINDER, we draw an ''L" shaped line ("L" LINE) with a long
bottom line as shown above. Then OOUBLE the number in the "SQUARE ROOT" (on top
of the radical) and enter it above the bottom of the 11 L 11 line and leave room to write in
another digit after it. The next digit on the "L" line can be anything from O through 9.
That means the "L" line number can be any number from 60 to 69 . Now observe again
that the REMAINDER is 621. Also, the second number on the "L" line will be the same
as the next digit in the "SQUARE ROOT" which appears above the next pair of numbers to
the right (21). Now we have to determine the correct number between 60 and 69, and the
digit between O and 9 whose product is equal to or less than the REMAINDER 621. In
order to estimate the number, we will use 60. Now 60 x ? = 621. The number 9 looks
possible because 60 x 9 = 540, which is less than 621. For the final test, we must place
this "9" after the "6" and multiply again to be sure that the product is equal to or less
than 621. Testing, we have 69 x 9 = 621, which is exact. This shows that 1521 is a
perfect square and that 39 is its square root. Observe below:

"L" LIN.;.;Eaa;.._ _____ 6_9 _ _. 6 21 - REMAINDER
6 21

0

Now, consider a more difficult example--a number whose square root is ffiRATIONAL.
The number 11 2 11 is a good example. In this example, we will calculate the ~ to 5
places. First of aU, since 2 is a whole number, we will add a decimal point to the right
and add 5 pairs of zeros and a radical. The calculation is done as follows:

1. 4 1 4 2 1
'1 2. oo"ooAoo,..,.oo"oo

1
"L" LINE----~ 00 ------------,.

96
"L" LINE --- • ~ 00 ---- ---- R~MAINDERS

"L" LINE

11 £.• LINE

"L" LINE ----

2824

28282

282841

2 81
1 19 00 _ _ ____ __,

1 12 96 /
6 04 00 •
5 65 64 _____ _, 38 36 00 -------.J

28 28 41
10 07 59 _________

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

31

6. 8. 1 EXTRACTING THE SQUARE ROOT (Continued)

Note that with the exception of the first "SQUARE ROOT" digit to the left, the last
digits of the "L" line numbers match the "SQUARE ROOT" digits exactly in the corres­
ponding positions. The number 11111 (1 x 1 = 1) proved to be the largest square less than
2 and was subtracted from it, leaving a REMAJNDER of 1. The square root of 1111' (also 1)
was entered above the "2". Note that since 2 is the only number left of the decimal point,
it is grouped alone . The decimal point is placed in its respective position above the
radical above the first decimal point. We then ''bring down" two O's to complete the first
REMAINDER of 100. We then double 1 to form the first digit of the first "L" line number.

ow we need a 20-29 and 1-9 number whose product is equal to or less than 100. In testing,
we find that 20 x 0 = 0; 21 x 1 = 21; 22 x 2 = 44; 23 x 3 = 69; 24 x 4 = 96; 25 x 5 = 125.
Since 96 is the largest number less than 100, we then subtract it from 100, forming part
of the second REMAINDER. We complete the first "L'' line number (24) and enter in the
other "4" as the SQUARE ROOT digit above the first pair of zeros (the square root now
reads "l. 4"}. We now double the 111411 , ignoring the decimal, to get 11 2811 • This "28" is
the first part of the second "L" line number (an easier way is just to double the last digit
in the preceding "L" line number, making sure to carry the extra "1" when doubling, if
the last preceding "L" line number is greater than 4).

Now we bring down the second pair of zeros to complete the second REMAINDER of
400. Now we need a 280-289 and 1-9 number whose product is equal to or less than 400.
In testing, we have: 280 x 0 = 0; 281 x 1 = 281; 282 x 2 = 564. Since 281 is the largest
number less than 400, we then subtract it from 400, forming part of the third REMAINDER
(119). We complete the second "L" line number (281} and enter the 11111 as the next SQUARE
ROOT digit above the second pair of zeros (the SQUARE ROOT now reads 1'1. 41 11). We now
double the "141", ignoring the decimal, to get "28211 • This "282" is the first part of the
third "L" line number.

Now bring down the third pair of zeros to complete the third REMAINDER (11900).
Repeat the checking process for numbers between 2820-2829 and 0-9 to obtain 2824 x 4 =
11296, the largest product less than 11900. The process is continued for as many places
as necessary.

The following are additional examples for the reader to observe the square root
process:

a. 1. 7 3 2 0 5 b. 4 0. 9 6
3 . 00A00A00A00A00 ✓ 16/\77. 72N,6
1 16

..ll.]zoo ~77
1 89 0
~ 00 ~ 72

10 29 72 81
3462 I 71 00 8186 I 4 91 16

69 24 4 91 16
34640 I 1 76 00 0

0
346405 I 1 76 00 00

1 73 20 25
2 79 75

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

32

6. 8. 1 EXTRACTING THE SQUARE ROOT (Continued)

C. 1 1. 0 4 6
✓ 1/\22. 01A,50A00

1

--2l..J022
21
~ 01

0
2204 I 1 01 so

88 16
22086 13 34 00

13 25 16
9 84

ote in example (a) that when we use the number "5'' to complete an "L" line number
(as in the 5th "L'' line), the multiplied product of the 11 L11 line and 11511 has exactly the same
digits of the SQUARE ROOT which have been calculated up to that point, but the last 11511 is
replaced by "25 11 • Note that 346405 x 5 = 1732025, which illustrates this point in example
(a).

6. 8. 2 THE BINARY SQUARE ROOT

The general rules are the same except that all digits, numbers, and operations are
performed and written in the binary system. The process simplifies greatly because
doubling a binary number means only adding an extra 11011 onto the number. For example,
doubling 1011 gives 10110 (1011 x 10 = 10110). Multiplication simplifies down because we
either write down the "L" line number and subtract, or we have 11011 • We do not have to
test several possibilities of "L" line digits because we can have only "1" or 11011 • Now let
us consider ...f'2in binary. This is written as ""11°"· We will determine {lo to 8
places . Observe the steps in the example below.

100

1. 0 1 1 0 1 0 1 0
"1 10.00~00.,.._oo,.._ooAooAooAooAoo

1
1 00 --------- ----"'"'\

0
_l_0_0 1____, 1 0 0 0 0

10 01
10101 1 11 00

1 01 01
"L" LINE - 101100 I

UMBERS ---- O /

1 11 00

1 01 10 01
10110100 I 1 01 11 oo

0

{
BINARY
SQUARE
ROOT

{ BINARY
REMAINDERS

El • 1011001 ! 1 11 oo oo ◄•-----.....-,,

101101001 ! ~1-0_1_1_1_0_0 00 -------....l
1 01 10 10 01

10110101001 1 11 00 ---------
0

1 11 00

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

6. 8. 2 THE BINARY SQUARE ROOT (Continued)

Note again either the "L" line numbers, or 11011 were the only possibilities for the
subtractions. Also, only the "L" line numbers ending in 11111 were subtracted. If the

33

"L" line numbers ended in 11011 , then 11011 was subtracted. The number "l" (1 x 1 :: 1) is
the largest square less than 10 and was subtracted from it, leaving a REMAINDER of 11111 •

11111 was ntered above the first pair of numbers 1'10" and the second BINARY POINT was
entered in above the radical in the proper position. The 11111 was doubled to yield "10"
which was entered as part of the first "L'' line number. The first pair of zeros was
brought down to complete the first REMAINDER. The final digit of the first "L'' line
number could only be "0" or "1" leaving the two possibilities of 100 and 101. Since 101
is larger than the REMAINDER, the only other possibility left is 100 . We completed the
first "L'' line number by adding on a 1101' and entered another "O" above the first pair of
zeros to the right of the binary point.. Subtracting "0" and "bringing down" the second pair
of zeros (right of the binary point) completed the s cond REMAINDER (10000). Doubling
the ''1011 in the "SQUARE ROOT" digits, ignoring the BINARY POINT, gave "100" which
was entered as part of the second "L" line number. The two possibilities for completing
the second "L" line number were 1001 and 1000 . Since the larger 1001 was still smaller
than the remainder 10000, the second "L" line number became 1001. The 111 11 was entered
above the second pair of zeros and the "L" line number was subtracted from the second
REMAINDER, leaving 111. "Bringing down" the third pair of zeros completed the third
REMAINDER (11100) and doubling the 11101" in the SQUARE ROOT yielded the first 4 digits
of the third "L" line number. In testing, the "L'' line number 10101 could be subtracted
from REMAINDER 11100 and the resulting "1" was entered above the third pair of zeros .
The process was carried out to 8 binary places .

The following additional examples will let the reader better observe the process of
extracting a binary square root.

1. 1 0 1 1 1 0 1 1
a. ,'1 ll.00/\00A00,-_00A00A00/\00AOO

1
101 I 10 00

1 01
1100 I 11 00

0
11001 I 11 00 00

1 10 01
110101 1 01 11 00

11 01 01
1101101 10 01 11 00

1 10 11 01
11011100 I 10 11 11 00

0
110111001 10 11 11 00 00

1 10 11 10 01
1101110101 1 00 11 01 11 00

11 01 11 01 01
1 01 10 01 11

b.
1 o. 1

✓ 1 10. 01
1

...1Q.LI010
0

1001 10 01
10 01

0

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

34

6. 9 ROUNDING "UP" AND ROUNDING 11DOWN11

Rounding "off" is the process of shortening the length of a fractional by dropping
one or more digits at the extreme right.

In the decimal fractional . 33333333333, we may "round off11 to two places as . 33. In
this case we rounded "OOWN", meaning we just dropPed the remaining digits. Now
consider the fractional . 66666666666666. In "rounding off1' to two places, we have. 67 .
In this case, we rounded "UP" (meaning that all digits were dropped after the second
digit, but the value of the second digit was increased f>y 111'?• 11Rounding off" to "N" digits
means that we retain "N" number of digits in the fractional and drop all the rest of the
fractional digits.

The "round off'' rule for the decimal system is to observe the first digit to be dropPed.
If that digit is a 5, 6, 7, 8, or 9, then we round "UP". However, if that digit is a 0, 1, 2,
3, or 4, then we round "DOWN" and simply drop the digits. Examples are 1.41421,
3.14159, 2. 71828, and 1. 73205. If we "round off'' the preceding to two-place fractionals,
we have: 1.41, 3.14, 2. 72, and 1. 73, respectively. Note that 112. 71 11 became 2. 72 before
dropping the "~28". Note the first digit to be dropped is an _!! and the rule says we must
add "1" to the 2. 7l before dropping the 1182811 • In "rounding off'' to three-place fractionals,
we have 1. 414, 3. 142, 2. 718, and 1. 732, respectively. Note that 113.141 11 became 3.142
before dropping the "19" because of the "5". In "rounding off'' to four-place fractionals,
we have 1. 4142, 3.1416, 2. 7183, and 1. 7321, respectively. Note that 113. 1415" became
3. 1416 before dropping the "9"; 112. 7182" became 2. 7183 before dropping the "8"; and
111. 7320" became 1. 7321 before dropping the "511 • A further example is: 1. 0995. In
"rounding off" to three fractional places, we have 1. 100 because of the "carries" generated
by the 9's. Also, the fractional 1. 99995 "rounded off'' to four places would be 2. 0000,
again because of the "carries". This concept can be extended to numbers which are not
fractionals . Consider 346. In "rounding off" to two significant digits, we start from the
extreme left and drop all digits beyond those two and add a zero (or zeros) when necessary
to show the proper magnitude of the number. Now 346 "rounded off'' to two places becomes
350. 78,600 "rounded off" to two places becomes 79,000. 1995 "rounded off1' to three
places becomes 2000, and so on.

6. 9.1 BINARY "ROUNDING OFF"

The rules for binary numbers simplify greatly since a digit can be only "l" or "0".
If the first digit to be dropped is a "l", then round 11UP11 • If it is a 11011 , then round
"DOWN". For example, 1. 0101 "rounded off11 to a three-place fractional is 1. 011.
"Rounding off'' to a two-place fractional, we have: 1. 01. Now suppose we have something
like 1. 01111. "Rounding off" to three places we have 1. 100 because of the "carries".
Likewise, 11rounding off" to a four-place fractional, we have 1. 1000 again because of the
"carries". The presence of "carries" when "rounding off11 binary numbers occurs much
more often than with ''rounding off" decimal numbers.

6. 10 BINARY COMPLEMENT

The BINARY COMPLEMENT of a number is that binary number which has the "1' s"
and 110's" of its digits interchanged. Examples are:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

35

6.10 BINARY COMPLEMENT (Continued)

BINARY NUMBER BINARY COMPLEMENT

10111010011 01000101100

111 000

110110010 001001101

10110101000 01001010111

100001111 011110000

Note that the sum of a binary number and its complement is a binary number whose
tot.al di&:its are the same as the original number of digits and all "1 's" . Illustrating this
with the above examples, we have:

10111010011

+01000101100

11111111111

111

+000

111

110110010

+001001101

111111111

10110101000

+01001010111

11111111111

100001111

+011110000

111111111

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

36

7. B ARY ELECTRONIC COMPUTER CffiCUITS

In order to build a digital electronic computer, we must convert logic FACTS and
CONCLUSIONS into electronic circuits. The basic circuit for representing logic FACTS
is the FLIP-FLOP. The electronic logic GATE uses the flip-flop "facts" (inputs) to
determine a conclusion. In order to produce automatic computer operation, the PULSE
GENERA TOR is needed to command flip-flop operation.

The three circuits mentioned above (FLIP- FLOP, GATE, and PULSE GENERA TOR)
represent the very heart of all computers. It is possible to build giant computers with
only these three basic circuits I

Electronic circuits shown in this section correspond to LIBE electronic circuits now
on the market, such as the FF-1, AM-1, AND-1, OR-1, A0-1, and EOR-1. All LIBE
circuits are built on printed circuit boards with connection pins protruding from the top
side. Connections are made by placing "alligator-clip" wires over these pins. The two
voltage pins are located at the !2,e of each unit {the "positive" (+) pin is marked with a red
dot and appears in the same position on all units). Power must be wired to each and every
unit for operation.

7. 1 THE FLIP- FLOP

The electronic FLIP-FLOP (the common name for a BISTABLE MULTIVIBRATOR)
generates the logic FACTS for the digital computer. The flip-flop can serve as a
"memory", perform addition and subtraction, count, and control other circuits.

This basic building block of all computers has millions of uses. There is no limit as
to how many can be used in a system. It is possible to build the simplest binary counter
or the most complicated computer depending on what is done and how many units are used.
The wide range of wiring projects in this book illustrates this point.

Basically, the flip-flop is an electronic circuit which changes state from "0 " to "OFF"
or "OFF" to "ON" at the proper pulse signal. One flip-flop can act as a pulse signal to the
other, which can in turn trigger another, and so on.

~

• -< C •-·

• • • A B C

"TRUE"
SIDE

- oe

"FALSE"
SIDE D E F

• • •
{a)

1'TRUE"
SIDE

11 FALSE"
SIDE

• • • A B C

(b)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

37

7. 1 THE FIJP-FLOP (Continued)

The figures above show the pin configuration of the LIBE FF-1 with its "readout"
lamp on top (a), and the flip-flop symbol for comparison (b). The dots represent the pin
connections (the two power pin connections are not shown in figure b) for wiring the flip­
flop. The "tip" on the right-hand side represents the "trigger" input pin.

There are many ways that flip-flops can be wired, the simplest being to connect pin A
to pin C and pin D to pin F (along with the proper 6-VDC connections to th voltage pins).
A pulse signal wired into pin G (the "trigger" input) will cause the flip-flop to change state.
Then either the "TRUE" output (pin A) or the "FALSE" output (pin D) of the driven flip-flop
can be used to drive another flip-flop.

A flip-flop is defined to be "ON" when its readout light is on, and "OFF" when its
readout light is off. The light is located on the "TRUE" (top) side of the flip-flop. The
side without the light is called the "FALSE" side.

The voltage pins will not appear in any of the flip-flop symbols. They will always be
on top and should be wired up to the proper voltages from the battery. Pin-identifying
letters will not be shown after the initial explanation. Note that pins A, B, and C will
always be in the top row. Pins D, E, and F will be in the bottom row. Pin G will be to
the right center edge. The top half of the flip-flop is the "TRUE" side and the bottom half,
the "FALSE" side. The light bulb indicator is always on the 11TRUE" side (top) between
the two voltage pins. The light bulb is also not shown on the flip-flop symbol.

To repeat again: In order to work, each flip-flop must have the proper voltage con­
nections. "+611 must be connected to the pin above A and 11- 11 to the terminal above C. The
flip-flop pins are more accurately described as follows:

A = "TRUE" DIRECTOR OUTPUT ("TRUE1' OUTPUT)

B = "RESET" INPUT

C = "TRUE'1 FOLLOWER INPUT

D = "FALSE" DIRECTOR OUTPUT ("FALSE" OUTPUT)

E = ' SET" INPUT

F = "FALSE" FOLLOWER INPUT

G = "TRIGGER" INPUT

Pin G is where all pulse signals are wired in. Pins A and Dare actual pulse signals
and can be used to trigger another flip-flop. The FOLLOWER INPUTS (pins C and F)
receive voltage pulse commands along with the "TRIGGER'' INPUT (pin G) to operate the
flip-flop. Pins B and E are used either to "enter" a binary number (turn the light on) or
"cancel" (turn the light off) . To 11enter'' a number, touch pin D to pin E . The flip-flop is
now "set" (the number has been entered). To "cancel" a number, touch pins A and B
together. The flip-flop is now "reset" (the number has been cancelled) .

The electrical volt.age output on the "TRUE'' and "FALSE" OUTPUT pins is in the form
of a SQUARE WAVE. This means that the voltage is either ''0 " or "OFF" as shown
below:

-~ ''DOWN-SWING";,
+6V ,;,r- 11 ov l - -, I ._I __,.,I

----• -- "UP-SWING11'!>=------->
.I ___ :::F~"

time --.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

38

7.1 THE FLIP-FWP (Continued)

Note that the voltage can either RISE from 0V to +6V, or FALL from +6V to 0V. There
is no other voltage value in between 0 and +6. The.!!:!§§ occurs during a voltage UP-SWING
and the FALL occurs during the voltage DOWN-SV/ING. The TRIGGER INPUT is sensitive
only to DOWN-SWING voltage changes and the flip-flop will change st.ate on a pulse DOWN­
SWING. The "l'RUE" OUTPUT and "FALSE" OUTPUT of the flip-flop are always in
opposite st.ates:

+6V

I 1' I 1' I I' I I ' "ON"
"TRUE" OUTPUT

ov "OFF"
- -·------ - - - - - ' time I ' +6V I I' I I I I I

"ON"
"FALSE" OUTPUT I ov "OFF"

When using the OUTPUTS of one flip-flop to trigger another flip-flop, it should be
noted (from the arrows in the above figure} that the DOWN-SWINGS will occur at different
times in relation to the "TRUE" readout light. The "TRUE'' OUTPUT will produce a
DOWN-SWING when the light goes off, but the "FALSE" output will produce a DOWN­
SWING when the light comes on.

The following circuit is recommended for flip-flop construction and is used for the
LIBE FF-1 units:

Ql

F

,--------------------,.-------1• +6

R5 - lOK

Cl - 1000 µ. µ. fT.I C 2 - 1000 µ.µ. f

G

R2 - 5600

All resistnnce values - 10,+30%

11
(Lamp}
Type 328
or equivalent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

7.1 THE FLIP-FWP (Continued)

The physical layout of the above circuit is on a 2 1/211 by 4 11 printed circuit board
with top and bottom mounting holes as shown in the picture below.

7. 2 THE PULSE GENERATOR

39

The PULSE GENERATOR (or ASTABLE MULTIVIBRATOR) is the commanding
device that makes the flip-flops work automatically. Usually only one or two pulse gen­
erators are needed for specific computer projects (either fast pulse or slow pulse,
depending upon application). Either of the two pulse output pins (not the voltage pins I)
can be used for the pulse signal.

PULSE
OUTPUT
PINS

+6 • • ------
•

------,.-•
(a)

------i-•
PULSE
OUTPUT
PINS

------i-•

(b)

The figures above show the pin configuration of the LIBE AM- with the voltage pins
on top (a), and the pulse generator symbol for comparison (b). The dots represent the
output pins in figure (b) .

The pulse from either output pin can be wired directly to pin G of one or more flip-­
flops for automatic "trigger" operation.

The electrical voltage on the PULSE OUTPUT pins is also in the form of a SQUARE
WAVE, but the difference is that the pulse generator produces this square wave auto­
matically whereas the flip-flop must be driven by a pulse. The DOWN-SWINGS produced

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

40

7. 2 THE PULSE GENERATOR (Continued)

by the pulse generator will cause flip-flop triggering.

The following circuit is recommended for pulse generator construction and is used
for the LIBE AM-1 units:

R3 - 47K R4 - 47K R2 - lK

- 10 µf * C
-------t

Q2

All resistance values -10,+30%

*The 10 µf value will produce about 2 pulses per second. Lower value capacitors will
produce faster pulse rate frequencies. Higher capacitance values will produce slower
frequencies.

The physical layout of the above circuit is on a 2" x 4" printed circuit board with top
and bottom mounting holes, as shown in the picture below.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

41

7. 2 THE PULSE GENERA TOR (Continued)

A variable pulse generator circuit can be built by replacing Rl and R2 by adjustable
resistors (potentiometers) of about l0K. Also, a l0K potentiometer can be added between
the bases of the two transistors. The following schematic diagram shows a variable pulse
generator circuit which will pulse at the rate of about 1 pps to 2000 pps by adjustment of
any one or all three of the potentiometers.

R3 - 47K

Rl - 10K
POTE TI OM ET En

Cl - 10 µf

Ql Q2

R5 - lOK
PO TEN TIO IF.TF.H --. --..

All rr.sistnn c values -10, +30%

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

42

7. 3 LOGIC GATES

Up to now we have discussed flip-flops which generate logic FACTS. Now, using these
facts, the LOGIC GATES generate CONCLUSIONS. In other words, logic gating is the con­
trol of flip-flop inputs (also "gate11 flip-flop inputs) and outputs by additional electronic
circuitry called a GATE. Each GATE has a specific logic function (such as "AND", ''OR",
"EOR", "SUM", etc.) and will produce flip-flop control determined by this logic function.

There are no limits to the kinds of electronic logic gates that can be built. Gates such
as "AND", "OR", 11NAND", ''NOR'', "EOR'', "SUM1', and "INVERTER" are but a very few.
However, the most important two gate types which form the basis for all computer building
logic are the "AND" and "OR".

Gate NOMENCLATURE is fairly easy. The general format for naming gates built on
electronic circuit cards is as follows:

(1) Identify the gate logic function.
(2) Identify the number of identical gates on the card.
(3) Identify the number of inputs per gate.

For example, in the LIBE AND-1, we have 2 separate identical "AND" gates with 4 in­
puts on each one. The correct nomenclature would then be: "AND" GATE, DUAL, 4-INPUT.
The LIBE OR-1 has 2 separate identical "OR" gates with 4 inputs on each one. The correct
nomenclature would then be: "OR" GATE, DUAL, 4-INPUT. Note that for step (1), we
merely call out a logic function. For step (2), we call out DUAL, TRIPLE, QUADRUPLE,
5-, 6-, for whatever number of identical gates there may be. However, in the case of
only one gate, this step may be skipped as it is not necessary to further identify a single
gate. Step (3) must show an identification number of at least 2: 2-, 3-, 4-, 5-, 6-, etc.

7. 3. 1 THE "AND" GA TE

The single "AND" gate is represented by a semicircle as shown below. For discussion
purposes, we will consider a gate with 4 inputs. Any inputs which are not used are merely
left open. The LIBE AND-1 has two identical "AND" gates of 4 inputs each and they are on
the right. The outputs are on the left. The top and bottom output pins are the "AND" out­
put pins while the inner two pins are the ''NANO" output pins for experimentation with nega­
tive logic. Inputs may be wired in from the ''true'' or "false" side of a flip-flop, or from
the output of another gate .

• +6 .- . +6 • ~--~---- ~-----~-
"AND" -. e E Ae OUTPUT

GATE i]A L "NAN D"-+ e F Be
fl B

ce
INPUTS C

OUTPUTS o• F D

OUTPUTS Ae Ft]A GATE
" AND"~

Be
112 Ee e ~ e F ce

"AND" ~ . E oe INPUTS

Figure (a) Figure (b) Figure (c}

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

7. 3. 1 THE "AND" GA TE (Continued)

The two top power pin connections are made in the same manner as on the FF-1
flip-flop units.

43

Pins A, B, C, and Dare the 4 inputs of each gate {GATE INPUT PINS). The "E"
PINS represent the "AND" OUTPUT. Note that these "E" PINS are the outside output pins
and that the top gate (/fl} has "E" on !22 while the bottom gate (#2) has "E" on the bottom_
The "F" PINS, or inside "OUTPUT" pins are the 11NAND" OUTPUTS.

The "AND" output of each respective gate is "ON" only when all its inputs are "ON",
and "OFF" when any one of its inputs is "OFF". The "NAND" output of each respective
gate is "OFF" only when all its inputs are ''ON11 , and 11ON" when any one of its inputs is
1'OFF".

Both the "AND" and "NAND" outputs can be used for "DOWN-SWING TRIGGERING" of
flip-flops; and either output can be wired into pin "0" of a LIBE FF-1 flip-flop to trigger it.
If only two or three "AND" inputs are needed, then the other 11input" pins should be left open
(no connections).

The simplified "gate" logic symbol {referring back to figure c) will be used to show all
"AND" logic operations. The small circles, which are tangent to the logic diagrams in
figure (b), represent the 1'NAND" outputs.

The following input possibilities exist for a 4-input 11AND" gate:

Note that the last case is where all 4 inputs are a "1". This is the only case where the
output is a 11111 • In all other cases, the output is a 11011 • To be more specific, the definition
of an "AND" gate is as follows: IF ALL INPUTS, REGARDLESS OF HOW MANY I ARE "1"
THEN THE OUTPUT IS A 111". IF ANY INPUT IS A 11011 1 THEN THE OUTPUT IS A 11011 •

The following circuit is recommended for "AND" gate construction and is used on both
the LIBE AN~l and A0-1 logic gates.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

44

7. 3 . 1 THE "AND" GATE (Continued)

--------•-----◄t,------ "+6V11

R5 lOK

+
CR4

+
4

Q2
INPUTS* +

+ "-"
CRl -

*To increase the number of inputs, add extra diodes in addition to the four already shown.
Be sure that all the anodes are connected to the same point. The input points will then be
on the cathode ends of the diodes.

The physical layout of the dual 4-input "AND" gate with "NANO" output is on a 2" x 4"
printed circuit board with top and bottom mounting holes as shown in the picture below.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

45

7. 3 . 2 THE 11OR'' GATE

The single "OR" gate is represented by a triangle as shown below. For discussion
purposes, we will again consider a gate with 4 inputs . Any inputs, which are not used,
are merely left open . The LIBE OR-1 has two identical "OR" gates of 4 inputs each and
they are on the right . The outputs are on the left. The top and bottom pins are the ''OR"
output pins while the inner two pins are the "NOR11 output pins for experimentation with
negative logic. Inputs may be wired in from the "true'' or "false" side of a flip-flop, or
from the output of another gate .

• +6 .- • +6 .-
,._ ---- --- - ---~---- OUTPUT

"OR" - e E Ae Et:]: L e F Be GATE
II OR' - c e #1 • • c n• INPUTS F D

OUTPUTS
- INPUT

OUTPUTS Ae
F~ : Be GATE INPUT

II OR" - e F c e #2 E e c
"OR" - e E n• INPUTS D

Figure (a) Figure (b) Figure (c)

The two top power pin connections are made in the same manner as on the FF-1 flip­
flop Wlits . Pins A, B, C, and Dare the 4 inputs of each gate (GATE INPUT PINS). The
"E" pins represent the "OR" OUTPUT. Note that these "E" PINS are the outside output
pins and that the top gate (#1) bas "E" on _.!:2J2 while the bottom gate (#2) has "E" on the
bottom. The "F" PINS, or inside "OUTPUT" pins, are the "NOR" OUTPUTS.

The "OR" output of each gate is "ON" whenever one or more of its inputs is "ON", and
"OFF" only when all of its inputs are "OFF". The "NOR" output of each respective gate is
"OFF" whenever one or more of its inputs is "ON", and "ON" only when all of its inputs
are "OFF".

Both "OR" and ''NOR'' outputs can be used for "DOWN-SWING TRIGGERING" of flip­
flops; and either output can be wi.red into pin "G" of a LIBE FF-1 flip-flop to trigger it.
If only two or three "OR" inputs are needed, then the other input pins should be left open
(no connections).

The simp1ified "gate" 1ogic symbol (referring back to figure c) will be used to show all
"OR" logic operations. The small circles, which are tangent to ihe logic diagrams in
figure (b), represent the "NOR' outputs.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

46

7. 3. 2 THE "OR" GATE (Continued)

The following input possibilities exist for a 4-input "OR" gate:

Note that the first case is where all 4 inputs are a "0". This is the only case where
the output is a "O". In all other cases, the output is a "1". To be more specific, the
definition of an "OR" gate is as follows : IF ALL INPUTS, REGARDLESS OF HOW MANY,
ARE "0" THEN THE OUTPUT IS A "0". IF ANY INPUT IS A "1" THEN THE OUTPUT IS
A "1 ".

The following circuit is recommended for 11OR11 gate construction and is used on both
the LIBE OR-1 AND A0-1 logic gates.

--------~-----"+6V"
R2 lK

"OR"
+

CR4
II OR"

4 CR3 Ql

INPU~ CR2

Q2

*To increase the number of inputs , add extra diodes in addition to the four already shown.
Be sure that all the cathodes are connected to the same point. The input points will then be
on the anode ends of the diodes.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

7. 3 . 2 THE "OR" GATE (Continued)

The physical layout of the dual 4-input "OR" gate with "NOR" output is on a 2" x 4"
printed circuit board with top and bottom mounting holes as shown in the picture below.

7.3 . 3 THE "AND" & "OR" GATE

47

The LIBE A0-1 card contains two gates (like the AND-1 and OR-1) but the top gate is
an "AND" GA TE and the bottom gate is an "OR" GATE. Both gates again have 4 inputs.
Power connections, INPUT PINS and OUTPUT pins are similar to both the AND-1 and
OR-1 configurations . The figures below can be compared to those of the AND-1 and OR-1.

. +6 .- e +6 .-________ _ ,.. _ ~-- ... ----
"AND" - e E Ae ,~r "AND11

11NAND" - e F Be
GATE B

ce INPUTS C
De F D

Ae
11OR"

F ~ A 11NOR' 1
- e F Be

GATE E e B
ce

INPUTS
e c

"OR" -+ . E oe D

(a) (b)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

48

7. 3 . 3 THE "AND" & "OR" GA TE (Continued)

The physical layout of this gate is on a 2" x 4" printed circuit board with top and
bottom mounting holes as shown in the picture below.

7. 3.4 NEGATIVE "AND" & "OR" GATES {"NAND" & "NOR")

As was mentioned earlier, "NAND" and "NOR" are shortened expressions for "NOT
A D" and "NOT OR". In other words, by putting the letter "N" before "AND" or "OR"
means we have a gate with the outputs inverted. An inverted output is a "l" instead of a
"0", or a "0" instead of a "l", (i.e. , replace "l" by "0" and "0" by "l "). The electronic
gate symbols for ''NAND" and "NOR" are the same as the corresponding "AND" and "OR"
except that a small circle on the output indicates that the output is inverted . Both "NAND"
and ''NOR" gates are shown below:

• .,_. INPUT .,._ INPUT

INVERTED ~ • .,_ INPUT INVERTED .,_INPUT -..
OUTPUT • PUT OUTPUT .,_INPUT

• .._ INPUT .,_ INPUT

''NAND'' "NOR"

wigfi
Stolen 2 Line Transparent

www.SteamPoweredRadio.Com

49

7. 3. 4 NEGATIVE "AND" & "OR" GA TES ("NAND" & "NOR") (Continued)

The IJBE "OR-1 11 , 11ANO-l", and "A0-1 11 gates have one regular and one inverted
output. That is, the "AND" gate also has a "NAND" output and the "OR" gate also has a
"NOR" output. If both the regular output and inverted outputs are used, then the "invert"
circle is added to the gates as follows:

OUTPUTS • ,._ INPUT

• ._ INPUT

•, INPUT

• ..__ INPUT_ _ _,

"AND" GA TE WITH
"NAND" OUTPUT

OUTPUTS

"OR"

"NOR".....,

~ INPUT

.,._ INPUT

.,_ INPUT

~ INPUT

"OR GATE WITH
11NOR" OUTPUT

Again, considering all the 4 possible inputs for a "NAND" and "NOR" gate, the following
possibilities exist:

0 0
0 0

0
0 1
1 0

0 0
1

0
1

0 1
l 0

1 1
0 0 0
0 1
1 0

1 1
1 0 1
0 1
1 0

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

50

7. 3. 4 NEGATIVE "AND" & "OR" GA TES· ("NAND" & "NOR") (Continued)

Note the last case for the "NAND11 gate and the first case for the 11NOR11 gate.
Specific definitions are as follows: IF ALL INPUTS, REGARDLESS OF HOW MANY I OF
A 11NAND11 GATE ARE 11111 THEN THE OUTPUT IS A 110 11• IF ANY INPUT IS A 11011 , THEN
THE OUTPUT IS A 11111• IF ALL INPUTS, REGARDLESS OF HOW MANY, OF A "NOR"
GATE ARE 11011 THEN THE OUTPUT IS A 11111• IF ANY INPUT IS A 11111 , THEN THE
OUTPUT IS A 110 11

• Compare these definitions with those for an 11AND" and 11OR11 gate and
note the difference in the outputs.

The following circuits may be used for "NAND" and "NOR" gates:

"NAND" CffiCUIT

"NAND"

Ql

4
INPUTS*

+

~

.,_..,._CRl

W----IN--- CR2

W----tN---CR3

11NOR11CffiCUIT

lK

"NOR"

Ql

--

*The number of inputs may be increased in the same manner as the 11AND11 and 11OR11 gates.
The physical layout of this negative gate is also in a 2" x 411 printed circuit as a dual gate
with any combination of gates (i.e. , dual 11NAND11 , dual 11NOR11, or dual gate with "NAND11 &
"NOR'').

7. 3. 5 THE 11EXCLUSIVE OR11 GATE ("EOR11 GATE)

The 11EXCLUSIVE OR'' gate is represented in this text by an edge-standing triangle
with a concave arc side for the inputs. A 4-input 11EOR11 gate is shown 1n the diagram
below. The dots represent the 11input11 and "output" connections. The difference between
11OR" and "EOR11 is that the "OR" gate output will be a 11111 when at least one input is a 11111•

However, the 11EXCLUSIVE OR" output will be a 11111 if, and only if one input is a 11111•

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

51

7. 3. 5 THE "EXCLUSIVE OR" GATE ("EOR" GATE) (Continued)

OUTPUT -.

An "EOR" gate of any number of inputs may be constructed by the sole use of "AND"
and "OR" gates. This will be discussed in section 10.

The following possibilities exist for a 4-input "EOR" gate:

Note that only where there is a single 11111 input, the "EOR" output is a "1". To be
more specific.the definition of an "EOR" gate is as follows: IF ONE AND ONLY ONE
INPUT IS A "l", THE OUTPUT IS A 11111 • IF A YOTHER INPUT IS A "1" OR IF ALL
INPUTS , REGARDLESS OF HOW MANY, ARE "0" THEN THE OUTPUT IS A 11011 •

The following circuit is used for "EOR" gates, but a severe limitation is that it pro­
duces sharp electronic "spikes'' (false "trigger'' pulses) when any of its inputs go from "O"
to "l" or from "1" to "0". Hence, it is only useful for direct display outputs and not for
"triggering". The circuitry for "EOR" gates of more than 2 inputs gets very complicated.
These multi-input "EOR" gates operate much more efficiently when "AND" and "OR"
equivalent logic is used (see section 10).

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

52

7. 3. 5 THE "EXCLUSIVE OR' ' GA TE ("EOR" GA TE) (Continued)

+6V --------- --- - - ----------,

R2 lK

Q3 Q2 --

The physical layout is on a 2" x 4" printed circuit board as a dual gate, 2-input.

7. 3. 6 THE "SUMMATION" GA TE ("SUM" GA TE)

The "SUMMATION" gate is represented in this text by a semicircle with a concave
connecting arc side for the inputs. A 4-INPUT 11SUM" gate is shown in the diagram below.
The dots represent the "input" and "output" connections. The difference between "SUM"
and "EOR" is that the "SUM" output is "l" when the number of inputs of "1" are odd. Note
that the cases where only one input is a "l" (in the "EOR" gate) is covered by the "SUM"
gate definition and, hence, all the "EOR" possibilities are also applicable to the "SUM"
gate. However , the possibilities of 3 inputs being a 11111 will show up as a 11111 for "SUM",
but not for "EOR". It can be noticed in the case of the 4-input "SUM" gate (by comparison
with the "EOR" output) that there are four more cases where the "SUM" gate is a "1".

A "SUM" gate of any number of inputs may be constructed by the sole use of "AND"
and "OR" gates. This will be discussed in section 10 .

The following possibilities exist for a 4-input "SUM" gate:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

53

7. 3. 6 THE "SUMMATION" GA TE ("SUM" GA TE) (Continued)

o-{t 0 1~ ¾ I 0
0
1

1~ ¾ ~ 0 ~ l~ i
1-{t ¾ i 0 ~ l~ i
o-{t 1 1~ ¾ ! 1

0
1

ote that only an odd number of 111 11 inputs will produce a 11111 output. Since we have 4
possibilities, either one or three 11111 inputs will produce a "l" output.

The "SUM" gate is also lmown as a "HALF ADDER" and can, in addition, be considered
a "PARITY" gate . "PARITY" as used in this text, is the condition of being odd or even.
That is, it will sense an odd or even number of 11111 inputs. If there are no inputs, 2 inputs,
or 4 inputs of "1", then this is considered "EVEN PARITY". If there is one input or three
inputs of "1", then this is considered "ODD PARITY".

In other words, the 11SUM1' gate will sense even or odd parity of 11 111 inputs . To be
more specific, the definition of a 11SUM" gate is as follows: IF THE PARITY OF ALL "1"
INPUTS, REGARDLESS OF HOW MANY, IS ODD, THE THE OUTPUT IS A 11111 • IF THE
PARITY OF ALL 11111 INPUTS IS EVEN, THEN THE OUTPUT IS A 11011 •

This can be verified by adding up any combination of binary 1111s 1', or 111 's" and 110 1s 11 ,

noting only the SUM and ignoring any "carries".

Examples:

1 + 1 = 0

1 + 1 + 1 = 1

l + l + O+ O + l + l + l = l

(ignore 11carry11 1)

(ignore 11carry11 1)

(ignore 11carry 10)

Note that a 2-input "SUM1' gate is exactly the same as a 2-input "EOR" gate. This
means that for two inputs only, the "SUM" and "EOR" gates may be used interchangeably.

The following circuit is suggested for a 2-input "SUM" gate. The outputs of this circuit
are free from electronic "spikes" and can be used for flip-flop triggering or direct display
outputs . The circuitry for "SUM" gates of more than 2 inputs gets very complicated. These
multi-input "SUM" gates operate much more efficiently when "AND" and "OR" equivalent
logic is used (see section 10) .

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

54

7. 3. 6 THE "SUMMATION" GA TE ("SUM" GA TE) (Continued)

RlO

INPUTS

A•----t1~•

+
~-eiHa cR2

~--+---,.. CRl

Rll

AvB

Rl lK

OUTPUT

(A + B)

QI

The physical layout is for a single 2-input "SUM" gate on a 2" x 411 printed circuit
board.

7. 3. 7 THE ''INVERTER" GA TE {''NOT" GA TE)

The function of the "INVERTER11 gate is to change the output into the opposite (or "NOT")
of what the input is. The "INVERTER" gate has only one input. By this definition, the
inverted gates "NAND" and "NOR" operated with single inputs will act as "INVERTER"
gates.

These 11INVERTER" gates will be used very little (or not at all) because inverted out­
puts are available from the "FALSE" sides of flip-flop inputs, and from the "NAND" and
"NOR" outputs of the "AND" and "OR" logic gates. The electronic gate symbol for "NOT"
is a small circle in front of an INPUT or OUTPUT position as shown below. The dot within
the small circle represents the pin connections which would be made.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

7. 3. 7 THE "INVERTER" GATE ("NOT" GATE) (Continued)

INVERTED
OUTPUT

INVERTED OUTPUT -----t@~+--- INPUT

INVERTED
INPUT

UT

PUT

PUT

INVERTED
OUTPUT

The basic circuit for the "INVERTER" gate is as follows:

--

55

UT

{ INVERTED
) INPUTS

The physical layout consists of four of this single-input inverter on a 211 x 4"
printed circuit board.

7. 4 GA TE OUTPUT "TRIGGERING" AND DffiECT DISPLAY

To produce flip-flop "triggering" by gate outputs, just wire the outputs directly to the
flip-flop "trigger" point (pin "G11 of the IJBE FF-1) . Only one gate output may be used as
a "trigger" . The basic wiring for "triggering" is shown below:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

56

7. 4 GA TE OUTPUT "TRIGGERING" AND DIRECT DISPLAY (Continued)

e +6 .- e +6 e- fi ------- ------
~ ~ Ae
A B C A B C Be

c e
G

ne
G Ae

D E F D E F
Be

~ ~ ce
ne

FF-1 FF-1 AND-1
OR-1
A0-1

In this configuration, the left FF-1 is controlled by gate #1 output and the right FF-1
is controlled by the gate #2 output. Note that FF-1 pins "A" and "C" and "D" and "F"
must be wired together for "triggering". The gate outputs can also be used to "trigger" a
shift register or several other FF-1 flip-flops simultaneously. If the above gate were an
A0-1, the logic representation of the above diagram would be as follows:

t!1

ra

If a gate output is wired directly into pin "E" of an FF-1 flip-flop, the flip-flop light
will display the DIBECT OUTPUT of the logic gate . This applies to all types of logic gate
outputs . In this case, the flip-flop is not "triggered.11 but is driven directly by the gate out­
put. No other flip-flop connections (except power) are necessary. Note the DIRECT
OUTPUT DISPLAY configuration below:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

57

7.4 GATE OUTPUT "TRIGGERING" AND DffiECT DISPLAY (Continued)

e +G e - e +6 e- • _..,.. ______ ------
e Ae e e e e e Be

DIRECT A B C DIRECT A B C ce
OUTPUT OUTPUT De

DISPLAY Ge DISPLAY Ge
OF OF Ae

GATE #2 Be
GATE #1 D E F D E F ce • • • • ne

FF-1 FF-1 0-1

OR-1
AO-1

Assuming again that the gate in the example above is an A0-1, the logic representation
of the above diagram would be as follows:

•ee

•
eee

•
A gate is not designed to be used both as a "trigger" to a flip-flop and a direct output

flip-flop display at the same time.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

58

8. ELECTRONIC COMPUTER CffiCUIT OPERATION

Now that we know computer logic and the computer electronic circuits which make up
this logic, we are now ready to use these basic building blocks to build up computer wiring
projects by using these appropriate blocks over and over again. This chapter bridges the
realm of theory from the previous chapters to the world of true applications of this theory.
However, other things have to be discussed, such as CAUTIONS, physical mounting and
connections, explanation of logic and wiring diagrams, power sources, and potential
problems that may occur during operation. Also, discussion is necessary on "senses" and
"commands", and "set" and "reset" capabilities.

8.1 CAUTIONS I 111

If you have built (or bought} the electronic circuits described in this book, the following
cautions should be observed in order not to cause unnecessary failure of your units.

1. DO NOT EXPERIMENT ON METAL SURFACES. The reason should be obvious.
Conducting metal can short out printed circuit board traces or other exposed connections on
the units.

2. BE CAREFUL OF THE "HOT" +6 VOLTAGE WIRES. If "+6" voltage hits pins A, B,
D, or E on the flip-flop, either pulse generator output pin, or any gate output pin, immediate
destruction of the units will result. This is also true if "+6" directly touches some other
parts on these circuits.

3. AVOID CARELESS WIRING. Be sure that all voltage wires are properly connected
to only the proper voltage pins. Sometimes,however,there may be direct voltage connections
only to pins C and F of a flip-flop. These are the only two pins on any of the circuits (other
than the voltage pins} that can accept direct voltage. If and when voltage connections to pins
C and Fare required, be sure that these are the only connections made to these pins!

4. 00 NOT USE EXCESS VOLTAGE. These units were designed to run on 6 volts for
maximum efficiency. However, satisfactory operation can be obtained with 8 volts, but
this shortens the life of the lamps on the flip-flops slightly. The circuits can be operated
up to 20 volts, but voltages in excess of 9 volts are not recommended.

5. REMOVE POWER WHE wmING OR CHANGING CONNECTIONS. All it takes is
one slip of a hot "+6" wire to destroy your units. Other wires accidently touching hot 11+6 11

voltage connections will yield the same destructive results!

6. 00 NOT POUND, DROP, OR CAUSE PHYSICAL SHOCK TO EITHER MOUNTED
BANKS OF UNITS OR INDIVIDUAL UNITS. This may result in broken lamp filaments, or
severing of the very fine microconnections inside the individual transistors and diodes
which comprise these circuits. Avoid pounding in nails to mount your circuits. Use tacks
or screws. Above all, be careful that the units do not drop on the floor.

8. 2 PHYSICAL LAYOUT, MOUNTING, AND CON ECTIONS

The individual flip-flop, pulse generator, dual 4-input "OR" gate, dual 4-input "AND"
gate, and the 4-input "AND" and "OR" gate are commercially available as FF-1, AM-1,
OR-1, AND-1, and AO-1, respectively, from LIBE COMPANY. The FF-1 is built on a
2 1/ 2" x 4" printed circuit board with top and bottom mounting holes v bile the AM-1, OR-1,
AND-1, and AO-1 are on 2" x 4" printed circuit boards with top and bottom mounting holes.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

59

8. 2 PHYSICAL LAYOUT, MOUNTING, AND CONNECTIO S (Continued)

If the reader wants to build his own circuits, it is suggested that these measurements be
maintained when using printed circuit boards. The pin (or terminal) input and output
locations should also be consistent with those of the commercially available units.

The beginning experimenter can build his own circuit on matrix board (vectorboard)
with low cost surplus parts. These matrix boards should be designed to be screwed into
a wooden mounting board. We will leave the method of building the units up to the experi­
menter's own preferences. However, the connection points (pins or terminals) on each
similar unit should be consistent from one unit to another. It is also suggested that, when
building logic gates, use four (4} inputs for each gate.

8. 2. 1 MOUNTING BOARDS

A wooden board covered with an attractive coat of spray paint makes an excellent
mounting and display board. The simplest mounting method consists of screwing the units
directly on the board and making wiring connections from the front. However, if permanent
wiring is desired, holes can be drilled in the board (remove units from board first) so that
wiring can be done from the back. As a starter, a 16'' x 32" piece of plywood about 1/2 to
3/4 inch thick is suggested. All units should be mounted with the power pins on top. The
flip-flop light should also be at the ,!:2.E. of the unit. Be sure to mount all units before doing
any wiring.

8. 2. 2 wmES

You will need many, many wires I A fair estimate is five wires per every electronic
unit used. If temporary experimental wires are desired, small alligator clips soldered on
each wire end are recommended. Suggested wire lengths are: 8 inches, 16 inches, 24
inches, and 32 inches. If a large number of wire lengths are to be made up at one time the
following percentages are estimated for the quantity of wires needed of the above four
lengths: 80%- 8 inches, 15%- 16 inches, 3%- 24 inches, and 2%'- 32 inches. Usually,
8-inch and 16-inch lengths will suffice. Wire lengths can also be made up as needed. If
permanent soldered wire connections are desired, then the wires, only need b stripp d at
each end and made ready for soldering. Otherwise, small alligator clips should be mounted
and soldered onto each end. Sometimes it is feasible to solder on only all the power wire
connections. By using alligator clips, multiple connections can be made at a single point
by the clip-on-clip method.

The DIODE wmE is a wire with a diode spliced into the middle of it. Usually the 8-inch
wire is best for the DIODE WIRE.

8. 2. 3 LABELS

After completing a wiring project, it always helps when a project is properly labeled-­
especially when explaining it to someone else, or for demonstration purposes. The following
labels are suggested:

1. Label each flip-flop (above the light) as 11111 , "2", u4••, "8", 1116", etc . to define
what number it represents. These numbers can then be added up when the lights
are "on" and ignored when the flip-flop lights are "off".

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

60

8. 2. 3 LABELS (Continued)

2. Label each flip-flop register such as 11ADDEND REGISTER 11, 11ACCUMULA TOR
REGISTER11 , etc. These are shown in the respective logic diagrams for the
wiring projects.

3. Label other functions such as 1'MULTJPLICAND CONTROL", 11HALT COMMAND",
11SAMPLE-AND-HOLD LOGIC", etc., as necessary. These are also shown in the
respective logic diagrams.

8. 3 LOGIC DIAGRAMS AND WIRING

The projects in the next two chapters are all illustrated by the use of logic diagrams.
The symbols for the flip-flop and pulse generator are explained in the previous chapter .
The gates are shown individually and not in the 11dual" configuration. The gate symbols are
also explained in the previous chapter. All dots within the symbols represent points of
possible connection. All lines, whether curved, straight, or "cornered", represent WIRE
CONNECTIO S. o power connections are shown in the logic diagrams. However, power
connections must be made on each and every unit individually in order for it to operate.
The logic diagrams, in effect, explain what to do only after the power connections have
been made. The DIODE WIRE is represented as follows:

Now let us look at a sample logic diagram and explain each point in the figure. In the
wiring, all lines which cross (I } are not connected unless there is a dot at the inter­
section(+ >·

flip-flop

(diode wir catbod
'-... _/' end

pulse
generator

conn tion to "ground"
voltag pin

ction to"+6~voltage pi

flip-flop refer nc designations

"OR" gat

flip-flop

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

61

8. 3 LOGIC DIAGRAMS AND Wm.ING (Continued)

The flip-flops are shown w~h lamp on top. For flip-flop A2, the top half is the 11A 211

half and the bottom half is the "A " half. The "gate" symbols may be shown oriented in any
direction, but the configurations for the flip-flop and pulse generator are only shown with
the output pins facing left and the input pins facing right. Gates will be shown as often as
possible with output pins facing left and input pins facing right, but sometimes it is
necessary to reverse orientations or face the symbols at 90° angles in order to simplify
wiring connections. If using commercial LIBE FF-1, AM-1, AO-1, AND-1, or OR-1, then
the outputs will face always left and inputs right when the power pins are mounted on top.
The 11+6" power pins are marked with a red dot.

8. 3. 1 POWER PIN CONNECTIONS

Again we remind the reader that all power pin connections must be made on each and
every unit. If the power pins were shown in the logic diagrams, they would always be on
top. Now let us include the power pins in a modified logic diagram and show how the con­
nections are made:

+6

ra r.1 •

It should be apparent that including power wiring in logic diagram will only further confuse
the complicated diagram.

8. 4 POWER SOURCES

A large 6-volt battery is recommended (preferably a double- size lantern type) for
projects which require 10 flip-flops or less . These batteries are easily obtained in hard­
ware, variety, or general merchandise stores. The "off1' state flip-flop current, pulse
generator current, and gate current are negligible (about . 006 amp, with . 036 watt power
consumption except for the gates which draw. 012 amp, with . 072 watt power consumption
for each gate). However, the "on" state fl.ip-flop current is very high (about .125 amp,
• 750 watt power consumption for each unit) because of the lamp display.

Flip-flops in the "on" state will cause a noticeable drain on the battery. When the
battery is being overloaded, all the "on•• flip-flops will dim considerably when another flip­
flop turns "on".

A 6-volt, 2 to 3 amp D. C. power supply is ideal. More than one power supply can be
used for larger projects . The following 1'brute force 11 power supply circuits are adequate
for use with the computer circuits and can easily be built up from surplus parts.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

62

8. 4 POWER SOURCES (Continued)

110V

LINE

2-AMP POWER DIODES

CRl

Tl

CR2

TRA SFORMER, FILAME T
12V, 2 AMPS, CE TER-TAP

Cl

+6

CAPACITOR,
ELE TROLYTIC
10, 000 µf (minimum),
10 voe

CIRCUIT # 1

2-AMP POWER DIODES +6

uov
LINE

Tl

TRA SFORMER, FILA.ME T
6V, 2 AMPS

Cl
CAPACITOR,
ELECTROLYTIC
10,000 µf (minimum),
10 VDC

CIRCUIT # 2

Both of the above circuits represent unregulated power supplies and therefore actually
put out more than 6 volts. The output is about 8 volts, but they are simple, easy to build,
and will do the job.

8. 5 SENSES AND COMMANDS

The uses of "SENSES" and 11 COMMANDS" will be employed widely in the next two
chapters on wiring projects. Let us first define the difference between the two. The
"COMMAND" causes a computer operation to take place such as a flip-flop change of state,
an addition, subtraction, or a lfhalt". A "SENSE" controls the execution of a command and
is used only in the advanced projects. For instance, we can sense whether a register con­
tains a number or does not (digit sense) or whether a flip-flop is a 11111 or a "0".

The most important command comes from the pulse generator and causes the other
circuits in turn to generate their own commands .

The next most important command is the "halt'' command which is needed to stop an
operation. The logic diagram for the "halt1' command is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

8. 5 SENSES AND COMMANDS (Continued)

ra

PULSE
OUTPUT

63

The pulse will be present only when the flip-flop is "on'' and will be suppressed when the
flip-flop is "off".

Two command generator counters are shown below for reference only. They are com­
posed of "A D" gated binary counters and will generate as many different commands as
the counter can count to. A 2-bit counter will generate 4 commands and a 3-bit counter
will generate 8 commands. These commands can be controlled by senses if necessary.

2-BIT COMMA D

GE ERA TOR CO TER

•

3-BIT COMMA D

GE ERA TOR COU TER

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

64

8. 5 SE SES AND COMMANDS (Continued)

The "sense" most often used is the output of a flip-flop. This flip-flop output can then
be used to control a command. The next most often used "sense" is the digit sense {to sense
a number in a register) . This consists of only one "OR" gate whose inputs are fed by the
"true" outputs of all flip-flops in a register . The logic diagram for a 4-bit digit sense is
shown below:

••

••• ••• • •• • ••
8, 6 SET AND RESET

It is possible to add a "SET" and "RESET'' capability to all projects in the next two
chapters as an extra feature by using diode wires (or diodes, if soldered in). Diodes are
connected to the bottom flip-flop center pin (pin E) for "SET" and to the top center pin
(pin B} for reset. The diodes are fed through switches which feed 11+6" voltage through a
lK resistor {DO OT FEED DIRECT "+6" VOLTAGE FOR SET AND RESET! 11 !). The
individual "set" and "common reset" connections are shown in the figure below for one
flip-flop register. These capabilities are not included in, any of the logic diagrams, but
may be added to each and every computer project as an extra feature.

"A " 4 "A "
3

"A II

2
"A II

1

SET SET SET SET

lK CURRE T- LIMITING RESISTOR

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

65

8. 6 SET AND RESET (Continued)

All switches are "normally-open" miniature pushbutton switches . The "set" capability is
not recommended for a "DOWN" counter register because of the fact that a ''set" of one
flip-flop will always trigger the next flip-flop over (to the left). How ver , there are no
problems with the "set11 for "UP'' counters and shift registers . The "common reset" will
work on all types of registers (i.e. , ''UP" and "DOWN" counters and shift registers) .

8. 7 INTRINSIC PROBLEMS AND DEBUGGING

You have carefully wired up a logic diagram project, but for some reason the project
will not work . There may be extraneous pulses or improper triggering. A bit will not
shift on a shift register or a counter may not count properly. A gated logic circuit might
work improperly or might not work at all . When these symptoms appear, the reader should
refer to this section for help . This means that we must go through a "DEBUGGING" stage.
Usually there will be no problems with the simple counters, adders, and shift registers.
However, on more complex projects, these problems may show up .

"DEBUGGING" comes from the slang word "bug" which means "problem'' (you have
probably heard the phrase "get the 'bugs' out" several times) . Well, in electronics we
have many, many "bugs" that may appear and we may spend several hours "troubleshooting"
to get them out. When problems do occur, the following is a suggested ord r of steps to be
followed:

1. DOUBLE CHECK ALL WIRING. Be sure that all connections have been made
properly, that connections are not missing, and that extraneous connections have not been
made. Sometimes it is possible to locate the vicinity of the problem by watching the unit
operate. Be sure also that isolated connections are not shorting together--especially when
using alligator clips .

2. REMOVE A D CHECK OUT INDIVIDUAL UNITS IN THE VICINITY OF THE
PROBLEM. You may have a burned out gate or flip-flop. If you think you have a marginal
unit which is not working properly, replace it with a similar unit to be sure. Be sure that
there are no cold solder joints and that the connecting pins (or terminals) ar making
proper contact with the back of the printed circuit board.

3 . CHECK THE ALLIGATOR CLIP WIRES (when used). There is the possibility of a
cold solder joint where each clip is soldered to the wire end. If wiring connections have
been permanently soldered in, check for cold solder joints by wiggling the wire(s) in
question. If there is some doubt, then reheat and resolder.

4. CHECK THE POWER SUPPLY (when used) . Be sure that it is operating properly
and is not throwing out line "spikes" or does not have burned out rectifier diodes or a
burned out filtering capacitor . A faulty power supply will not allow the computer units to
work properly .

5. BE SURE THE UNITS ARE- NOT NEAR INTERFERENCE SOURCES. Electrical
appliances, el~ctric blankets, refrigerators, and operating electric band drills or electric
saws are notorious for throwing out interference spikes that will be picked up by the flip-­
flops. An electric arc or heavy-current switch will also cause problems. A distance of
about 20 feet should be maintained from the above interference sources if there appears to
be a problem. If there is A. C. line noise in the power supply, the power supply should be
"isolated" by use of either a "variac" variable voltage transformer or a line isolation
transformer . This kind of interference problem is usually rare, but it does exist.

If all the above steps fail to debug the wiring project, then we have entered the nebulous
area of INTRINSIC PROBLEMS. If all units check out properly individually and all other
possibilities of wiring errors, cold solder joints, and interference have been eliminated,

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

66

8. 7 INTRINSIC PROBLEMS AND DEBUGGING (Continued)

but the wiring project will still not function properly, we have an INTRINSIC PROBLEM.
In other words, the units should function, but do not. We can only offer some suggestions
for debugging such problems. Sometimes nothing will help and a wiring project may have
to be redesigned or rebuilt with new units. If an intrinsic problem appears, proceed with
the following steps:

1. WIB.E IN MULTIPLE POWER CONNECTIONS. This should be done especially in
the area where the problem seems to be. At times, when power has to travel through too
many wires, a small resistance is created. Since the flip-flops change state in about 1
microsecond, this may cause a very small instantaneous power drain along the power wires.
This power drain or 11pull-down" gets worse as the distance increases from the main power
connections and sometimes the flip-flops are sensitive enough to detect this. If the probes
of an oscilloscope were placed across the power leads a considerable distance from the
main power connections, these "pull-down" periods can be observed as definite "spikes"
during operation. Other times, inductive and/ or coupling effects may be the cause. Try
wiring every third or fourth flip-flop with direct redundant power connections. Sometimes
only one additional set of power connections may help. An alternative is to try making the
single power connections at different points. Also, a third alternative is to wire in
DECOUPLING CAPACITORS of at least 1 microfarad directly across the power pins in the
area where the problem is occurring.

2. INTERCHANGE SIMILAR UNITS. Sometimes two units will not work properly with
each other, but will perform normally elsewhere in the wiring project. Remove and re­
place any suspected marginal units. Sometimes this marginal interaction or accumulative
tolerance is the cause of the problem.

3. ELIMINATE LOGIC GATES WHENEVER POSSIBLE. When a flip-flop signal passes
through more than three logic gates, sometimes there is a s low-down of a flip-flop pulse
and it will not "fall" fast enough to trigger a flip-flop. Other times some peculiar combin­
ations of "AND" and "OR" gates will produce extraneous pulses. Sometimes merely
changing gates around (or changing ''AND" and "OR" logic around) will remedy the problem.

4. AVOID DRIVING TOO MANY OTHER UNITS WITH A SINGLE GATE OR FLIP-FLOP.
The circuits in this book should be capable of driving at least 10 other units. If it is
absolutely necessary to drive more than 10 units with a single gate or flip-flop, the driver
unit should be modified by changing the voltage dropping resistors (usually Rl and R2) from
1K to soon .

5. SffiFT REGISTER UNITS MAY NEED TO BE MODIFIED. If bits fail to transfer
properly in a shift register even after switching flip-flop tmits around, the flip-flop tmits
may be modified as follows: Change R2 from 560 ohms to 200 ohms and/ or decrease R5
and R6 from lOK to 4. 7K. This modification will clear up most shift register intrinsic
problems--especially when the shift register flip-flops are driving several logic gates.

Finding remedies for intrinsic problems is a very important phase in the manufacture
of all large commercial electronic computers. This is also part of the "fun" of building
your own computer and should give you some insight to problems encountered in the com­
mercial computer industry. Again, when problems occur, refer back to this section!

8. 8 CARE AND REPAIR OF UNITS

When soldering permanent connections to pins, be sure that any "swedged" or
"friction-contact" pins or terminals are also soldered to the trace of the printed circuit
board (when applicable) . This will prevent intermittent connections due to soldering heat.
Also, when making repairs or modifications on units on printed circuit boards, avoid

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

8. 8 CARE AND REPAIR OF UNITS (Continued}

overheating copper traces . Avoid pulling or twisting parts so hard that traces will be
either pulled loose or broken.

67

An ohmmeter, when used on the ''Xl0" scale, makes a very effective trouble-shooting
device. About 99 . 5% of all failures of units can be attributed to transistors, diodes, or
lamps. In many cases, the blackened color or broken filament of a burned out lamp is
obvious. However, when in doubt, an ohmmeter will register "short" for a good lamp and
"open" for a bad one. The diode will conduct in only one direction. If a diode failure is
suspected, place the ohmmeter leads across the diode in one direction and then reverse
the leads and place across the diode in the other direction. A good diode will show a
resistance of about 1000 ohms (silicon junction) or 200-500 ohms (germanium junction) in
one direction, and as "open" in the other direction. A ''leaky" diode will show some
resistance in both directions. A "shorted" diode will show up as "short" in both directions,
and an "open" diode will show up as "open" in both directions . Replace all "leaky",
"shorted", and ''open" diodes.

Transistors may also be checked with an ohmmeter . The transistor consists of a
'collector", "base", and "emitter". The most common configuration for transistors, with
leads facing out from the paper, is as shown below:

COLLECTOR --.....

BASE

EMITTER

While the results of transistor checks on an ohmmeter are more uncertain than those
of a lamp or diode, they still give a reasonable indication of a good or bad pa.rt. We st.art
the check by holding an ohmmeter lead on the BASE and checking for resistance between
B & C and B & E . Reverse the ohmmeter leads and check again for resistance between
B & C and B & E. Then check for resistance between C & E and reverse ohmmeter leads
and check again for resistance between C & E. A good transistor will show a junction
resistance (about 1000 ohms for silicon or about 200-500 ohms for germanium) between
B & C and B & E in one direction (with same lead on B), and as "open" between B & C and
B & E in the other direction. The resistance between C & E in both directions should be
"open"; however, in some germanium transistors a resistance of about l0K in one direction
is acceptable. A "shorted" transistor will show up as "short" in at least one measurement.
An "open" transistor will show up as "open" in all measurements. A "leaky" transistor
will show some resistance in both directions of the B & C and B & E measurements and/or
resistance in both directions of the C & E measurements. If the C & E resistance is low in
one direction (less than 10,000 ohms), then the part should be changed. Replace all "open",
"shorted", and leaky transistors,

Do not operate repaired units immediately alter soldering. Let the soldered junctions
cool down for at least two (2) minutes.

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

68

9. BASIC NON-GATED COMPUTER PROJECTS

The projects in this section show all basic flip-flop operations without the use of any
logic gating. These projects are fairly simple and should be wired up first before attempting
the more difficult ones in the next section. Explanations are shown using four flip-flops for
each register. However, there is no limit to the number of flip-flops that can be used. Note
the wiring of the middle flip-flops. Extra flip-flops can be wired into the middle in the same
manner. As an example, it is possible to have a 10-bit "up" counter by wiring in 6 extra
flip-flops . Again, be sure that proper connections are first made to all voltage pins to
provide power to each unit. Suggested parts lists are included only for projects in this
section. The flip-flops are labeled with designations such as "Ai", "A3", "A2", "Al", etc.,
for reference with projects in the next section.

9. 1 THE BINARY "UP" COUNTER

The binary "up" counter will count upward in order from 1 through 15 (for the 4-bit
example shown below), and then reset (clear) itself and start over again. The logic diagram
for a 4-bit binary "up" counter is as follows:

t!1

r.. r.. r..

Suggested parts list:

4 Flip- Flops (FF-1)

1 Pulse Generator (AM-1)

22 811 wires (clip-on wires)

9. 2 THE B ARY "DOWN" COUNTER

•

The binary "down" counter will count downward (backward) in order starting from 15 (for
the 4-bit example shown below) down to O and then start over. The logic diagram for a 4-bit
"down" counter is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

9. 2 THE BINARY "DOWN" COUNTER (Continued)

~

Suggested parts list:

t!J t!1

4 Flip- Flops (FF-1)

1 Pulse Generator (AM-1)

22 811 wires (clip-on wires)

9. 3 THE BINARY SHIFT REGISTER (LEFT)

69

•

The binary shift register (left) will shift any binary number entered to the left and do
an "end-around" shift from the last flip-flop to the first. For example, consider the 4-bit
number 0001. Shift once: 0010. Shift twice: 0100. Shift three times: 1000. Shift four
times: 0001 (starts over). Another example: 0011, 0110, 1100, 1001, 0011 The
pulse generator controls the shift rate. A fast pulse will cause a fast shift, while a slow
pulse will cause a slow shift rate. The logic diagram for a 4-bit binary shift register (left)
is as follows:

Suggested parts list:

4 Flip- Flops (FF-1)

1 Pulse Generator (AM-1)

20 8" wires (clip-on wires)

2 16" wires (clip-on wires)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

70

9. 4 THE BINARY SHIFT REGISTER (RIGHT)

The binary shift register (right) will do essentially the same as the "left" shift, but
will shift to the right instead of the left. For example, consider again the 4-bit number
0001. Shift once: 1000. Shift twice: 0100. Shift three times: 0010. Shift four times:
0001 (starts over). Another example: 0011, 1001, 1100, 0110, 0011.... . The direction
of shifts is determined by the director outputs. If the director outputs connect to the
follower inputs immediately to the left, the shift will be to the left. If the director outputs
connect to the follower inputs immediately to the right, then the shift will be to the right
(as in this case). The logic diagram for a 4-bit binary shift register (right) is as follows:

Suggested parts list:

4 Flip-Flops (FF-1)

1 Pulse Generator (AM-1)

20 811 wires (clip-on wires)

2 1611 wires (clip-on wires)

9. 5 THE COMPLEMENTARY TRANSFORMATION REGISTER

The complementary transformation register is merely a shift register with the "end­
aroun~" shift connections interchanged. The register should receive only as many pulses
as there are ''bits" and the pulse should be removed after the proper number of triggers.
The 4-bit register requires four trigger pulses which will change (transform) any binary
number into its complement. Consider again the example 0001. The following series of
shifts will take place with each number inverting at ~sition Al in a modified left-shift
register: 0001, 0011, 0111, 1111, 1110. We start at 0001 and four pulses later we have
1110. The logic diagram for a 4-bit complementary transformation register is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

9. 5 THE COMPLEMENTARY TRANSFORMATION REGISTER (Continued)

Suggested parts list:

4 Flip-Flops {FF-1)

1 Pulse Generator (AM-1)

20 8" wires {clip-on wires)

2 16" wires (clip-on wires)

9. 6 THE NON-GATED BINARY ADDER

71

In designing this simple bi.nary adder, we combine both the binary "up" and "down"
counters {to form two registers) and use a "HALT11 command flip-flop to control the pulse.
The top register, which indicates the answer, is called the ACCUMULATOR. The bottom
register is called the ADDEND REGISTER (where the numbers to be added are entered).
The flip-flop on the bottom is connected to the pulse generator by means of a diode wire
(be sure that the diode faces in the proper direction-the 11line" marked side of the diode
is negative and goes directly to the flip-flop). When the "HALT" flip-flop is in the 11011

state, the pulse is stopped. When the addition is completed, the 11true" side of the last
flip-flop in the addend register will trigger the 11HALT" flip-flop and stop the pulse.

The number to be added is entered into the ADDEND REGISTER. Then touch the two
pins together (shown with arrows) on the "HALT" flip-flop and the light will come on and
start the addition process. The light will turn off when the process is completed and the
answer will appear in the accumulator. The ADDEND REGISTER has automatically
cleared and the next number can be entered for addition.

To clear the accwnulator, add to it that nwnber which is equal to its complement + 1.
That is, starting from the right, enter a 11111 in the first flip-flop opposite the flip-flop in
the ACCUMULATOR that has the first light on. After that, enter 1111 s 11 only opposite zeros
in the ACCUMULATOR. The resulting addition will clear all the registers. The logic
diagram for a 4-bit adder is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

72

9. 6 THE NON-GATED BINARY ADDER (Continued)

"DOWN" COUNTER ACCUMULATOR

t!f t!f

r..

"UP" COUNTER ADDEND REGISTER

Suggested parts list:

11HALT"
COMMAND

9 Flip-Flops {FF-1)

1 Pulse Generator (AM-1)

45 811 wires (flip-on wires)

1 161' wire (clip-on wire)

1 diode wire (clip-on wire)

9. 7 THE NON-GATED BINARY SUBTRACTER

•

The principle of the subtracter is almost the same as that of the adder, except that
both upper and lower registers are 11up11 counters . The bottom register is now called the
SUBTRAHEND REGISTER.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

73

9. 7 THE NON-GA TED BINARY SUBTRACTER (Continued)

To subtract, enter a number in the ACCUMULATOR. Then enter the number to be
subtracted in the SUBTRAHEND REGISTER. Touch the two pins together (shown with
arrows) in the "HALT" flip-flop and the light will come on and start the subtraction process.
The light will turn off when the subtraction is completed and the answer will appear in the
ACCUMULATOR. The SUBTRAHEND REGISTER has autnmatically cleared and another
number can be entered for subtraction.

To clear the ACCUMULATOR, subtract the number that is in it. That is, enter that
same number in the SUBTRAHEND REGISTER. The resulting subtraction will clear all the
registers. The logic diagram for a 4-bit subtracter is as follows:

"UP" COUNTER

"UP" COUNTER

Jet

Suggested parts list:

9

1

45

1

1

ACCUMULATOR

SUBTRAHEND REGISTER

"HALT"
COMMAND

Flip- Flops (F F-1)

Pulse Generator (AM-1)

8" wires (clip-on wires)

1611 wire (clip-on wire)

diode wire (clip-on wire)

c..

•

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

74

10. ADVANCED COMPUTER PROJECTS

The projects shown in this chapter are not meant to be easy, but to show how various
operations are performed within a computer. The arithmetic processes of addition,
subtraction, multiplication, division, and square rooting are shown here. There are also
various other projects such as the BCD counter, time machine and electronic dice.

All projects in this chapter contain logic gating in one form or another, using "AND"
and "OR11 gates, whereas the previous chapter did not. It is up to the experimenter to
determine his own parts lists and mounting displays.

10. 1 THE BINARY CODED DECIMAL (BCD) COUNTER

The binary coded decimal (BCD) counter is a very basic application to get a feel for
logic gating. This counter is quite commonly used in producing decimal number conversions
from binary. The BCD counter uses 4 binary flip-flops to count to 10 (instead of 16 for a
normal binary counter). The gate logic for the BCD counter is as follows:

BCD COUNTER LOGIC

Only 2 11AND" gates and an 11OR" gate are needed (in the above version) to convert a
basic 4-bit counter into a BCD counter. The counting sequence will be: 0000, 0001, 0010,
0011, 0100, 0101, 0110, 0111, 1000, 1001, and reset to 0000. Other binary coded logic
counters can be obtained by changing the location of the logic gates. Further experimenta­
tion is left to the reader.

Let us analyze the logic involved in the BCD counter. First of all, we must start the
count with all flip-flops reset to 0000. Note that the ''FALSE" output of the 118" flip-flop is
now "ON" since the flip-flop is a "011

• When the 11111 flip-flop comes on with a pulse from
the AM-1 pulse generator, we have the first ''AND" gate with two inputs that are "ON11• The
11AND" gate is now "ON". The next pulse turns the "1" flip-flop off. This, in turn, will
turn off the "AND" gate and transmit a "DOWN-SWING TRIGGER" signal to the "2" flip-flop.
We now have 0010. The next pulse turns the "1" flip-flop on again for 0011. Again the
"AND" gate is "ON". The next pulse will turn the "1" flip-flop off again and the "AND" gate
will once more be "OFF". This transmits another "DOWN-SWING TRIGGER" to the "2"
flip-flop which will turn off and trigger the "4" flip-flop which will come on. We now have
0100. The 11411 flip-flop is a direct input to the "OR" gate which is now 11ON" with one input
"ON11

•

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

75

10. 1 THE BINARY CODED DECIMAL (BCD) COUNTER (Continued)

Again we repeat the above sequences for 0101, 0110, and 0111. The next pulse will
reset the "l", 11211

, and "411 flip-flops to 11011
• When the "411 flip-flop is reset to "0", the

"OR" gate turns off and produces a trigger to the ''8" flip-flop which turns on for 1000.
Now we have a different situation. The 11811 flip-flop is now "ON" and the ''FAI.SE" output
to the first "AND" gate is now "OFF", which means that the first "AND" gate can not turn
on while the 11811 flip-flop is a "111• The next pulse will produce 1001. Now observe that
the second "AND" gate has both inputs "ON" and is now turned on. This in turn produces
an "ON" input to the "OR" gate which also turns on. The next pulse will reset the "l"
flip-flop back to 11011 which turns the second ''AND" gate off and, in turn, turns off the "OR"
gate to produce a trigger pulse which resets the 11811 flip-flop back to ''O" and now the whole
BCD counter is reset to 0000.

There is one slight drawback to the simplified BCD counter logic discussed above. If
an erroneous display such as 1010, 1011, 1100, 1101, 1110, or 1111 should occur, the
"OR" gate will ''hang up" and never turn off by pulsing the "1" flip-flop. As a result, only
the "1" flip-flop will turn on and off without triggering any of the other flip-flops. To
prevent this from happening, we must add a third "AND" gate as shown below. The result­
ing modified BCD counter will not "hang up" under any display combination, but merely
continue counting, reset itself, and start over with a correct BCD counting sequence.

r.1 r.1 r.1 •

NON-"HANG-UP" BCD COUNTER LOGIC

10. 2 THE LOGIC ADDER

In logical addition, we have four numbers to consider. The first two are A and B, the
two numbers to be added together. The third is called the "SUM" of A and B and is repre­
sented by "S". The fourth is called the "CARRY" generated by A and B when they are
added together. Note that the only case for a single number sum to generate a "carry" is:
1 + 1 = 0, carry 1. The other three combinations (1 + 0, 0 + 1, and O + 0) do not generate
a "carry".

Using "AND" and "OR" gates, the logical "sum" Sis represented as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

76

10. 2 THE LOGIC ADDER (Continued)

A
+B
s

S = A+B = (A· B)v(A· B)

The "carry" is represented as follows: C = A· B

ce

Let us represent two flip-flop registers A and B for a 4-bit logic adder as follows:

REGISTER
A

REGISTER
B

•••

•••

•••

•••

• ••

• ••

• ••

• ••

• •• • ••

••• • ••

• •• • ••

• •• • ••

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

77

10. 2 THE LOGIC ADDER (Continued)

The subscripts 1, 2, 3, and 4 indicate the flip-flop position in each register. Now
let us consider Al and B1. Outputs "A1 11 and "B111 are generated by the "TRUE" side of
flip-flops "Ai", and "Bl", respectively. Outputs "Ai" and "Bi" are generated by the
"FALSE" sides of these respective flip-flops.

FLIP-FLOP "B1"

In logical addition, flip-flops A1 and B1 1n both registers A and B may be specially
treated since they represent the least significant digit and no "carry" can be generated by
any flip-flops to the right. In other words, the "carry11 which we will call "C0 11 , is always
"0" and the invert "Co" is always 11111 • Therefore, using the general logic equation for the
sum of three numbers A, B, and C, we may simplify both the "S" and the "C" for the first
digit.

S = A +B + C
1 1 1 o

S = (A · B · C)v(A · B · C)v(A · B · C)v(A · B · C)
1 llo llo llo llo

Set C = 0 and C-- = 1
0 0

s1 = (A1 · B1 · 0)v('\ · B1 · l)v(A1 · B1 · l)v(~ · B1 · 0)

s1 = (0)v(A1 · 1\ · l)v(A1 · B1 · l)v(0)

S = (A • B · l)v(A · B • 1)
1 1 ..J WWW 1 1

~1 = (Al· Bl)v(Ai' B1> I

C1 = (A1· B 1)v(A1• C0)v(Bi' C0)

Set C = 0
0

C1 = (A1 · B1)v(A1 · 0)v(B1 · 0)

c1 = (Al· B1)v(0)v(0)

1c1 == A1· Bd
From the calculations above, we can represent addition on the LEAST SIGNIFICANT

DIGIT by the following logic:

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

78

10. 2 THE LOGIC ADDER (Continued)

Cl e----te

<\ ----.....
(Input to the next digit)

A

B

For intermediate positions such as A2 and B2, A3 and B3 , we have (using as an
example A2 and B2) the follo ing logic:

s2 = A2 + B2 + cl

Sz= (A 2• B2• C1)v(A2· B2• <\)v (A.2- B2• c 1)v (A2· B2• c 1)

The "TRUTH TABLE" for the intermediate positions A2 and B2 is as follows:

A2 B2 Cl s2 c2

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

From the preceding equations, we can represent the intermediate digits by the follow­
ing computer logic :

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

79

10. 2 THE LOGIC ADDER (Continued)

<\
Cl

A2" B2· Cl A2

B2

A2" 132" <\ ••
s2 A2

A2° B2· <\
••

X2· B2· c1

A2· B2

••
c2

A2· Cl

B2 •• c2 B2·C1

Cl

Note that the 11carries'' C1 and C1 are from the previous register digits (i.e., to the
right) and that "C21' and "C2" are the inputs for the next position over to the left. The
logic clrcuitry which generates only the "sum" and not the "carry" is called a HALF
ADDER. Thus, the three "AND" gates and "OR" gate which generate S2 above are a HALF
ADDER. The complete logic above which generates both the "sum" and "carry" is called a
FULL ADDER.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

80

10. 2 THE LOGIC ADDER (Continued)

The complete 4-bit logic adder is shown in the figure below:

• : ,,r

• • ..
• "'

• • ,,,"' •

• . "' . "'

•
•

<"'-------------------++--><~----~--,1.-------

.,
<

a{' 1<"

.
<

~
A
A
<
C)
C,

g
E-<
i:1:1

I
"d'

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

81

10. 2 THE LOGIC ADDER (Continued)

Note that the readouts consist only of flip-flops wired up in the "direct readout"
configuration. The first four flip-flops s

1
, s

2
, s

3
, and s

4
read out the direct output of the

final "0R11 gates of S , S , S , and s
4

. The last sum S is read out directly from carry
1 2 3 5

c4.
When the full logic adder is put into operation, the answer will appear in register S

for any addition problem as soon as the binary digits are entered into registers A and B.
There are no intermediate steps and the answer is always instantaneous. The flip-flops
in registers A and B may be further wired into separate pulsed (or common-pulsed) "up"
or "down" binary counters to give a continuous display of all the addition possibilities.
Each time a register changes value, the answer will change value. The registers A and
B may also be wired into separate shift registers to obtain a continuous display of the sum
depending upon the shifted position of the binary numbers in both registers.

To make an adder larger than 4 bits, merely repeat the connections, logic, and cir­
cuitry as shown in positions 2 and 3 to add as many intermediate bits as necessary.

10. 3 THE LOGIC SUBTRACTER

In logical subtraction, we also have four numbers to consider. The first is A, the
"MINUEND" (the number from which another number will be subtracted). The second is B,
the "SUBTRAHEND" (the number to be subtracted). The third is called the "DIFFERENCE1'

of A-B (the answer resulting from the subtraction) and is represented by "D". The fourth
is called the "BORRQWH, represented by "W", which is generated when B is greater than
A. Note that the only case for a single number difference to generate a "borrow" is:
0 - 1 = 1, borrow 1. The other three combinations (0 - 0, 1 - 1, and 1 - 0) do not generate
a "borrow".

Using "AND" and "OR'1 gates, the logical "difference" Dis the same as the logical
"sum" Sand is represented as follows:

A
-B

D

D = A-B = (A· B)v(A· B)

The "borrow" is represented as follows:

W=A·B

... -~•A

..,_ ___ B

w -•~--1E]ie. i---=· :

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

82

10. 3 THE LOGIC SUBTRACTER (Continued)

Let us represent registers A and B for a 4-bit logic subtracter as follows:

REGISTER
A

REGISTER
B

•••

•••

•••

•••

•••

• ••

•••

•••

• •• • ••

• •• • ••

• •• • ••

• •• • ••
The subscripts 1, 2, 3, and 4 indicate the flip-flop position in each register. Now let

us consider A1 and B1 . Outputs 11A1" and 11B111 ar~ generated by the "TRUE" sides of
flip-flops "All'! and "B1", respectively. Outputs "Ai" and "B1 11 are generated by the
"FALSE" sides of these respective flip-flops .

In logical subtraction, the binary number in register A must be greater than the binary
number in register B . The "borrow" is treated much the same way as the ''carry" in
addition except that we will represent the "borrow" by the letter ''W". Again, we will
consider the least significant digits A1 and B1. Note that no "borrow" can be generated by
any flip-flops to the right. In other words, the initial "borrow" which we will call ''W 0 11 ,

is always 110 11 and the invert 11W0 11 is always 11111 • Therefore, using the general logic
equation for the difference of three numbers A, B, and W, we may simplify both the "D"
and the ''W" for the first digit.

D1 = (Al-Bl)-Wo

D = (A . B , W)v(A · B · W)v(A • B · W)v(A · B · W)
1 11 o 11 o 11 o 11 o

Set W = 0 and W = 1
0 0

D1 = (A1 · B1 · 0)v(A1 · B1, l)v(A1 · B1 · l)v(A1 · B1 · 0)

D1 = (0)v(A1 • B1 · l}v(A1. B 1 · l)v(0)

D = (A · B · l)v(A . B . 1) 1 1 1 1 1 I Dl = (Al. fl)v(Xi' Bl) I
W 1 = (A1 · B1)v(B1 • W 0)v(A1 • W 0)

Set W = 0
0

W 1 = (A1 · B1)v(B1 · O}v(A1 • 0)

W l = (A1 · B1)v(0)v(0}

(w1 = X1·Btf

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

83

10. 3 THE LOGIC SUBTRACTER (Continued)

From the calculations above, we can represent subtraction on the LEAST SIGNIFI­
CANT DIGIT by the following logic:

~\----­
(Input to the next digit)

For intermediate positions such as A2 and B2, A3 and B3, we have (using as an
example A2 and B2) the following logic:

D2 = (A2-B2)-Wl

D2 = (A2, B2· W1)v(A2• B2, W1)v(A2• B2, W1)v(A2• Bf W1)
- -

W 2 = (A2 · B2)v(B2 · W 1)v(Af W 1)

The "TRUTH TABLE'' for intermediate positions A2 and B2 is as follows:

A2 B2 Wl D2 w2

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

84

10. 3 THE LOGIC SUBTRACTER (Continued)

From the preceding equations, we can represent the intermediate digits by the follow­
ing computer logic:

B
2

ate that the "borrows" W1 and W1 are from the previous register digits (i.e., to the
right) and that "Wz11 and 11w211 are the inputs for the next position over to the left. The logic
circuitry which generates only the 11difference11 and not the "borrow" is called a HALF
SUBTRACTER (which is logically the same as a HALF ADDER). Thus, the three 11AND11

gates and 11OR11 gate which generate D above are a HALF SUBTRACTER. The complete
logic above which generates both the ,i~Jifference11 and 11borrow" is called a FULL
SUBTRACTER.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

85

10. 3 THE LOGIC SUBTRACTER (Continued)

The complete 4-bit logic subtracter is shown in the figure below.

<.----:=-.---=--=------=-----4-.. -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_~
I<

<
IQ ,< ..

llll

• • • ..
• Q •

~
i:-:1
~

...... ... C)
I<

J;Q ... ~
~
;::>
ti)

• C)

• d''
....

• c.,

s
~
~
I

"" I<"'

......

• • •

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

86

10. 3 THE LOGIC SUBTRACTER (Continued)

Note that the readouts consist only of flip-flops wired up in the "direct readout" con­
figuration . The first four flip-flops D1, D2, D3 , and D4 read out the direct output of the
final "OR" gates of D1, D2, D3 , and D4 . The last "difference" D5 is read out directly
from the "borrow" w4. This last "borrow" output to the extreme left of the register is
called an 11OVERFLOW11• The "overflow'' will come on only when an improper subtraction
is performed (that is, when the number in register B is greater than the number in register
A). This "overflow" may also be used as a control in more complicated operations such as
division and square root.

When the full logic subtracter is put into operation, the answer will appear in register
D to any subtraction problem as soon as the binary digits are entered into registers A and
B. There are no intermediate steps and the answer is always instantaneous. The flip-flops
in registers A and B may be further wired into separate pulsed (or common-pulsed) "up"
or "down" binary counters to give a continuous display of all the subtraction possibilities .
Each time a register changes value, the answer will change value. The registers A and B
may also be wired into separate shift registers to obtain a continuous display of the
11difference" depending upon the shifted position of the binary numbers in both registers.

To make a subtracter larger than 4 bits , merely repeat the connections, logic, and
circuitry as shown in positions 2 and 3 to add as many intermediate bits as necessary.

10. 4 THE SHIFT ADDER

When it is necessary to keep the number of logic gates to a minimum, we can combine
a single FULL ADDER logic circuit with three shift registers and a binary counter to per­
form the addition procedure. However, the answer must be shifted out from the registers
A and B, through the full adder logic, to register S. The control binary counter must
generate precisely the same number of pulses as the number of flip-flops in each register .
If all shift registers A, B, and Shave 4 flip-flops each , then a simple non-gated 2-bit
binary "up" counter will suffice as a control counter. However, if the number of flip-flops
in shift registers A, B, and Sis a non-binary number (i.e. , not 2, 4, 8, 16, 32, or 64,
etc .), then an appropriate gated logic counter must be used as a control counter . For
example, if the registers have 10 flip-flops each, then a BCD counter must be used as a
control counter to generate precisely 10 pulses .

•

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10. 4 THE SHIFT ADDER (Continued)

The diagram below shows the logic and wiring for a 4-bit shift adder.

" HALT"
COMMAND

•

•

c
C

C
C

87

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

88

10. 4 THE SIDFT ADDER {Continued)

The first flip-flops to the right in the A and B registers are "sensed.11 by the full adder
logic. Thus the inputs to the full adder are Ai, Ai, B1, and Bi. The "carry" and inverted
"carry" C• and C• are generated from the flip-flop inputs. The "CARRY FEEDBACK"
flip-flop Cc is directed by C• and C• steering and generates the "carry" feedback outputs
Cc and Cc. These Cc and Cc inputs are fed back into the full adder logic to generate the
"sum" outputs S• ands.. The "CARRY FEEDBACK" flip-flop must be reset to "0" before
performing any addition. The "sum11 outputs s. and S• steer flip-flop s4 in register Sand
the successive sum is shifted down the line until stopped by the SHIFT CONTROL COUNTER
and the "HALT COMMAND". The addition process is started by shorting together momen­
&rily the two pins in the "HALT COMMAND" flip-flop (indicated by the two arrows).

The "SHIFT SUBTRACTER" is also possible and it is left as a problem for the reader
to make the slight logic changes to convert the "SHIFT ADDER"int.oa"SHIFT SUBTRACTER"
if he so wishes.

10. 5 "SAMPLE-AND-HOLD" I.DGIC

The "sample-and-bold" is one of the more important functions of advanced computer
operations. The approach discussed here is that of a digital type and the logic shown is
only one way in many to build a "sample-and-hold".

The basic function is to "sample" a number entered in one register and copy it into a
second register without removing the basic number from the first register. Consider two
4-bit registers A and Bas shown in the diagram below.

REGISTER
A

REGISTER
B

~

"SAMPLE"
COMMAND

Register B, shown as an 11up11 counter, may be of any configuration desi ed. However,
register A as shown above has no other function other than displaying the "sampled" number
from register B. To operate, connect the 11SAMPLE COMMAND" point to the output of an
additional flip-flop. Each output in register B is now "AND"-ed with the outputs B1, B2,
B3, and B4. Now, whatever number is present in register B will input to each respective
"AND" gate where the number is a 11111 • The flip-flop which controls the "SAMPLE COM­
MAND11 provides the second input to each "AND" gate. By setting this flip-flop to a "1", the
gates are turned on where there is a 11111 in the B register. By resetting this flip-flop, we
turn off any ''AND" gates that are "l", thus putting out a 11trigger" pulse into each respective

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

89

10. 5 11SAMPLE-AND-HOLD11 LOGIC (Continued)

A register position where the "AND" gate was on. The number present in the B register
is thus "sampled" into the A register and is held there until cancelled. As was mentioned
earlier, there is no further function that can be performed with the A register as it stands
now.

If we wish the A register to perform additional fWlctions such as counting or shiftmg
after sampling, more logic must be added as shown in the diagram below:

REGISTER
A

"SAMPLE''
COMMAND

REGISTER
B

h1

In this case, we have given register A the additional capability of acting as an "up1'

counter . By changing the gate inputs from the "true" sides of A1, A2, and A3 to the "false"
sides of A1 , A2 , and A3 , respectively, register A will then operate as a "down" counter in

addition to "sample-and-hold". ate the addition of the "OR" gates to allow for two
separate inputs for each flip-flop in :register A. Also, three more "A D" gates wer added
(on top) to "cut off" the counter interconnection during the time when the sampling is done.
The HALT COMMAND flip-flop also acts as an effective counter "cut-off" control. This
principle will be used in one of the MULTIPLIER configurations later on.

The number in register B will now be sampled into register A when the "SAMPLE"
COMMAND is triggered by a flip-flop output. Then, by setting the HALT COMMAND
flip-flop, the count will begin from the number that was 11sampled" in. The count may be
stopped at any time by resetting the HALT COMMA D flip-flop .

If register A is connected as a shift register, then the top "cut-off" "AND" gates are
not needed, but the logic is more complicated and requires inverted outputs from the
"AND" gate.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

90

10. 5 "SAMPLE-AND-HOLD" l.OGIC (Continued)

The configuration is as follows:

" HIFT" CO 1MAND

R EGISTER
A

"SAMPLE"
OOMMAND

REGISTER
a

' •,
'•

h1

Now we have given register A the additional capability of acting as a shift register
(left). The "shift" connections may also be changed so that a "right11 shift is performed (no
other wiring changes are necessary). Note the connections to "+6 11 and "ground1' (y).
These must also be adjusted accordingly so that the number will shift out left (or right).

The number in register B will now be sampled into register A when the "SAMPLE"
COMMAND is triggered by a flip-flop output. Then, by further triggering of the "SHIFT"
COMMAND, the 11 sampled" number will shift out in the left direction. The A register can
also be wired for "end-around'' shifting in either direction.

10 . 6 GATED 11 UP-OOWN 11 COUNTER

The basic definition of a binary "UP-DOWN" COUNTER is a single register binary
counter that· can be controlled by some means so as to count "UP" or ''DOWN" at the proper
command. The basic 4-bit counter configuration shown here uses "AND" and "OR" logic
with two flip-flops to control the "UP" and "OOWN" count.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

91

10. 6 GATED "UP-DOWN' COUNTER (Continued)

" UP-DOW " CONTROL

The "UP-DOWN" CONTROL flip-flops are wired up so that the free-running counter
will count alternately "UP" and then switch automatically to "DOWN11 after resetting from
the "UP" count. The counter will then count "DOWN" to zero and then "overflow" (i. e. ,
all numbers in the counter will be "1' s"). The "overflow" will switch the counter back to
"UP" again and all the "1 's" will reset. The "UP" count will again begin from zero and
proceed over and over again as described above.

It is of interest to the reader to note that, as an automatic counter, it is not possible
to go through all the "UP" counts and "DOWN" counts without allowing for the "overflow".
The reason is that, as a "DOWN" counter, all the "AND11 gates controlling the "FALSE"
side of the flip-flops are "ON" when the binary numbers in the counter are all zeros . When
the counter is switched to "UP" again, these "AND11 gates will shut off and generate a
"carry" which will turn on flip-flops when the counter should be reset. This condition
does not exist when the "DOWN11 count is in 11overflow11 •

10. 7 THE FULL- LOGIC BINARY MULTIPLIER

In logical multiplication, we have three main numbers to consider . The first two are
A and B, the two numbers to be multiplied together (i.e., the 11MULTIPIJCAND" and
"MULTIPIJER1'). The third is called the "PRODUCT" of A and B and is represented by
''P11 • The 11PRODUCT", however, must be broken down into individual cross-products
which will be represented by double-subscript notations such as P 13 , P 22 , etc.

The ''times" sign {x) will be used in this discussion to refer to arithmetical multipli­
cation. Now let us work out all the multiplication possibilities for a single-number product
and present them in a truth table.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

92

10. 7 THE FULL-LOGIC BINARY MULTIPLIER (Continued)

A B

0 0

0 1

1 0

1 1

AxB

0

0

0

1

A-B

0

0

0

1

Note that the product A x B truth table exactly matches the "AND" truth table for A· B.
Thus, multiplication and "AND11 logic functions are the same.

Basically, we have:

P = Ax B = A·B

Let us represent again two flip-flop registers A and B for a 4-bit full logic multiplier
as follows:

REGISTER
A

REGISTER
B

•••

•••

•••

•••

• ••

• ••

•••

•••

• •• •••

• •• • ••

••• • •• •

• ••
The subscripts represent the flip-flop position in each register. The number in each

register is then represented as A4A3A2A1 and B 4B3B2B1. Now let us multiply these two
numbers together:

A4 A3 A2 Al

X B4 B3 B2 Bl

A4xBl A3xB1 A2xB1 A1xB1

A4xB2 A3xB2 A2xB2 A1xB2

A4xB3 A3xB3 A2xB3 A1xB3

A4xB4 A3xB4 A2xB4 A1xB4

PB p7 p6 p5 p4 p3 p2 pl

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10. 7 THE FULL-LOGIC BINARY MULTIPLIER (Continued)

Using the definition that Ax B = A· B, we have the following expression:

A4 A3 A2 Al

X B4 B3 B2 Bl

A4 · B1 A3·Bl A2 · Bl Al - Bl

A4 · B2 A3 · B2 A2 · B2 A1·B2

A4·B3 A3·B3 A2·B3 A1 · B3

A4·B4 A3-B4 A2·B4 A1 · B4

PS p7 p6 p5 p4 p3 p2 pl

Now, using our "cross-product" subscript notation, we have:

A4 A3 A2 Al

X B4 B3 B2 Bl

p41 p31 p21 pll

p42 p32 p22 p12

p43 p33 p23 p13

p44 p34 p24 p14

PS p7 p6 p5 p4 p3 p2 pl

ote the equivalent cross-product expressions . Examples: P 4 ,1 = A4 · B1, P 22 =
A2 · B2 , and P 4 = A3 · B 4 . Each cross-product is a separate "ANDt expression. The
bottom produc1 num6ers with single subscripts (i. e. , P , P , P , etc.) represent the

93

1 2 3
binary product digits of the complete product. These product digits represent the sum of
all respective cross-products in each column and the "carries" that may be generated by
previous columns. Thus, P 1 = P 11 = A1-B1. P 2 = P 21 + P 12 and c2 (the 1'carry") =
P 2 · P 12. The expressions become very complicated. Note that the number of product
dig\t positions must be exactly equal to the total number of digit positions in both the A and
B registers . In this case, both registers have 4 digits each so 4 + 4 = 8 product digit
positions.

We will continue this discussion using a 2-bit full logic multiplier for simplicity.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

94

10. 7 THE FULl.rLOGIC BINARY MULTIPLIER (Continued)

REGISTER
A

REGISTER
B

•••

•••

•••

•••

• ••

• ••

• ••

• ••
Now let us start again with the cross-product definitions and set up the logic equations.

A2 Al A2 Al

X B2 Bl X B2 Bl

A2-Bl Al-Bl p21 pll

A2·B2 A1·B2 p22 pl2

p4 p3 p2 pl p4 p3 p2 pl

We can see that P 11 = A1· B1 , P 21 = A2· B1 , P 12 = A1· B2, and P 22 = A2- B2. We are
now ready to determine the logic for the product digit positions P 4 , P 3 , P 2, and P 1.

Pl = Pu = 1 A1·B1 I

p 2 = p 21 + p 12 = (A2 · Bl)+(Al. B~

Using the addition identity we have

p21 + p12 = (P21· p12)v(P21 · p12)

P 2 = ((A2· B1)· (A1· B2)] v[(A2• B1)• (Ai° B2)]

= [(A2• B1)- (i\ vB2)] v ((A2vB1)• (A1 · B2)]

= ((A1 · A2 · B1)v(A2 · B1 · B2)] v ((Al· A2 · B2)v(A1 · B1 · B2)]

(AI #1)

(Subs ti tu ting)

(DM #1)

(DL #1)

(AL 12)

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10. 7 THE FULI.r LOGIC BINARY MULTIPLIER (Continued)

Pa = P22+C2

= (A · B) + C
2 2 2

= ((A2 · B2>· <\] v [(Y2> · c2 J
= [(A2· B2)• (A1• A2· B1 · B2)] v((A2• B2)· (A1• A2• Bi" B2)]

(Subs ti tu ting)

(Al fl)

(Substituting)

(DM 15)

95

= [(A2· B2)· (A1 vA 2vB1 vB2)]v [{A2vB2)· (A 1 · A2· B1 · B2)]

= [(A· B ·A)v(A ·B ·A)v(A ·B ·B)v(A ·B ·B)]v
2 21 222 221 222

(DL #1 & AL #2)

((A1· A2• B1• B2· A2)v(A1 · A2· B1 · B2· B2)]

= [(A2 · B2 · A1)v(O)v(A2 · B2· B1)v(O)) v [(O}v(O)]

= [(A2· B2·A1)v(A 2. B2· B1)]

= (A · B ·A)v(A · B · B)
2 2 l 2 2 1

Pa = I (A1·A2·B2)v(A2·~·B2>I

ca = P22 · c2

= A2· B2· C2

= A2· B2·A1·A2· Bl· B2

= Al. A2· Bl. B2

(FI #2)

(Simplifying)

(AL #2)

(CL #1)

(Substituting)

(Substituting)

(FI *1)

(Subs ti tu ting)

Thus we have determined the logic for the product digits of the 2-bit multiplier.
Summarizing, the logic for P 1 , P 2 , Pa , and P 4 is as follows:

pl = Al· Bl

P 2 = (Al· A2 · B 1)v(A 2 · B 1 · B2)v(A1 · A2 · B2)v(A1 · B1 · B2)

pa= (A1·A2· B2)v(A2· Bl· B2)

p4 = Ai A2· B1• B2

Using the above information, the configuration for the 2-bit full logic multiplier is as
follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

96

10. 7 THE FULL- LOGIC BINARY MULTIPLIER (Continued}

- ···1 ••• ••• • ••
p

p4 t > p2 t pl t REGISTER
p3 ·r >

••• ••• • •• •• I.
I I

Cfii~·· A ·A ·B A1·A2·B1 Al · Bl

L<l.rtl~ rfi- ~
uE] - A2·B1·B2

¥11 L<] ' - i1E1l
-

A£B1· B2 ~·A2·B2

411 -
A1•B1·B2

Al
Al

A2

Bl
A2 A2

Bl

B2
Bt

B2
82

_r r
, ... , ..

A2 t > Al t >

- ••• =••
-.. =••
B2 a > B1 t

-.. =••

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

97

IO. 7 THE FULL-LOGIC BINARY MULTIPLIER (Continued}

ote that the readouts for P 1 , P 2 , P 3 , and P 4 consist only of flip-flops wired up in the
"direct readout'' configuration.

When the full logic multiplier is put into operation, the answer will appear in register
P for any multiplication problem as soon as the binary digits are enter d int.o registers A
and B. There are no intermediate steps and the answer is always instantaneous. The
flip-flops in registers A and B may be further wired int.o separate pulsed {or common­
pulsed) 11up11 or "down" binary counters to give a continuous display of all the multiplication
possibilities. Each time a register changes value, the product will change value. The
registers A and B may also be wired int.o separate shift registers .

It b comes very complicated to enlarge a multiplier of this kind to handle more than
two binary digits in the A and B registers . As an example, let us summarize the very
basic equations for the 3-bit and 4-bit configurations:

A3 A2 Al A4 A3 A2

X B3 B2 Bl X B4 B3 B2

p31 p21 pll p41 p31 p21

p32 p22 p12 p42 p32 p22 p12

p33 p23 p13 p43 p33 p23 p13

p6 p5 p4 p3 p2 pl
p44 p34 p24 p14

PB p7 p6 p5 p4 p3 p2

For 3-bit A and B registers, we have:

p 1 = p 11 = Ai" Bl

p2 = p21 + pl2

C2 = p21 · pl2 = Al· A2 · Bl• B2

P = P +P + P + C
3 31 22 13 2

C3 = <P31' p22)v{P31 · pl3)v{P31. C2)v(P22· P13)v{P22· C2)v{Pl3 ° C2)

* C3A = P31·P22·P13·C2

P 4 = P 3 2 + P 23 + ca

c4 = <P32· P 23>v(P32· C3)v(P23 · C3)

P5 = P33 + C4 + C3A

C5 = cP33 " C4)v(P33· C3A)v{C4· C3A)

p = C
6 5

Al

Bl

pll

pl

* "Carry" c3A is the second "carry" generated by P 31 , P 22 , P 13 , and c2. The c3A
occurs in a position two digits over to the left. Note how the "carries" become
complicated 1

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

98

10. 7 THE FULirLOGIC BINARY MULTIPIJER (Continued)

For 4-bit A and B registers, we have:

pl = pll = Al-Bl

p2 = p21 + p12

C2 = p21· p12 = A1·A2· Bl· B2

p3 = p31 + p22 + pl3 + C2

Cs = (P 31° P 22)v(P 31 · P 13)v(P si" C2)v(P 22 • P 13)v(P 22 · C2)v(P 13 · C2)

CSA= psi" p22· P13· c2

p4 = p41 + p32 + p23 + pl4 + C3

C4 = (P 41° P32)v(P 41° P 23)v(P 41 · P 14)v(P 41° C3)v(P32· P 23)v(P 32. p 14)v(P 32° C3)v

(P 23. p 14)v(P 23. C3)v(P 14. C3)

C4A = (P 41. p32· p 23° p 14)v(P41· p 23. p 14" C3)v(P41· p32· p 14' C3)v(P41' p32' p 23. C3)v

(P32' p23' p14. C3)

p 5 = p 42 + p 33 + p 24 + C3A + C 4

C5 = (P 42· P33)v(P 42. P 24)v(P 42. c3A)v(P 42. C 4)v(P 33 · P 24)v(P33 · C3A)v(P33 · C 4)v

(P24' C3A)v(P24· C4)v(C3A. C4)

c5A = (P42· Paa· P24· c3A)v(P42· P24· caA· C4}v(P42· Paa· caA· C4)v(P42· Paa· P24· C4)v

(P33" p24° caA· C4)

p 6 = p 43 + p 34 + C 4A + C 5

C6 = (P43 ' p34)v(P43" C4A)v(P43. C5)v(P34. C4A)v(P34" C5)v(C4A· C5)

csA = P4a· Pa4· c4A· cs

P7 :::, P44 + c5A + cs

C7 = (P44" C5A)v(P44' C6)v(C5A. C6)

P8 = c 6A + c 7 = c6A v c 7

In order to build multipliers of larger size, we must use the cumulative addition
method as shown in the next project.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

99

10. 8 THE CUMULATIVE-ADDITION MULTIPLIER

The cumulative-addition multiplier performs multiplication by successive addition
rather than by full logic gating. Logic gates are used to control all the steps, but not for
direct functional multiplication display. In effect, we will convert the non-gated adder
described in section 9. 6 into a multiplier by the addition of "sample-and-hold" logic. This
project requires four registers. The 4-bit multiplier (with an 8-bit "product") will be
described here. The logic diagram for this multiplier is as shown below.

Q
z Q
< z
~ ~

= 8 8
!: ~ = h :i:,"' c°' 0 ::, c/ii is"' <
~i 8i .
8tcc <"' < a:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

100

10. 8 THE CUMULATIVE-ADDITION MULTIPLIER (Continued)

The ACCUMULATOR (or PRODUCT) register is on top. This register is simply an
8-bit "OOWN11 counter. The second register, the ADDE D register, is basically an
8-bit "UP" counter modified to accept 11sampling" from the MULTIPLICAND register
below for cumulative addition. The MULTIPLICAND register is a 7-bit left-shift register
which will display a 4-bit number in four different positions (i.e. , the first or "set"
position and three additional positions}. The bottom MULTIPLIER register consists of a
4-bit right-shift register which will shift out a 4-bit number to the right. In addition,
there is a 11halt control" for the adder portion and a "halt control" for the multiplier portion.
Only the extreme right digit will be "sensed11 as this digit will control the successive
addition process. Each time a binary number shifts into the extreme right position, it will
be "sensed" by the logic circuitry. If it is a 1'1", then a "sample" and an addition will be
performed, followed by a "shift" of both the MULTIPLIER and MULTIPLICAND registers
to the next position. If the extreme right multiplier number is a "011 , then there will be
no "sample" and E2. "add"; but there will be a 11shift" only in both the MULTIPLIER and
MULTIPLICA D registers to the next position.

If we analyze this process by use of a "flow" diagram, we have the following processes:

HALT
(COMMAND}

MULTIPLICATION
SUBROUTINE

START
(MANUAL

COMMA D)

DIGIT
SE SE

YES

SE SE

"0" "l"

SAMPLE
(COMMAND)

ADD
(COMMAND)

SHIFT
(COMMA D)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

101

10. 8 THE CUMULATIVE-ADDITION MULTIPLlER (Continued}

The process begins with 11START" which is accomplished by shorting together the two
pins marked with arrows in the flip-flop in the MULTIPLICATION CONTROL. This starts
the multiplication process in motion. The "digit sensett function is accomplished by con­
necting all the "true" outputs of the binary digits (bits) in the MULTIPLICAND and
MULTIPLIER registers to an "OR" gate(or combination of "OR" gates). In other words,
we must "OR" together all the "true' outputs mentioned above. In this configuration, when
both registers "clear" (i. e. , when the last number shifts out from either or both registers),
the "OR" gate to the MULTIPLIER CONTROL will turn off and produce a "downswing"
trigger which will stop the multiplication process. This "halt control" flip-flop will trigger
precisely at the right time.

The SUBROUTINE is controlled by the 2-bit counter in the MULTIPLICATIO CONTROL.
This 2-bit counter is wired to cause three "A D" gates to turn on and off precisely at the
right time to produce triggers which control the "SAMPLE", "SHIFT" and "ADD" commands.
The "MULTIPLIER SENSE" is the "true" output of the last digit to the right in the MUL Tl­
PLIER register . This "MULTIPLIER SENSE11 is wired into both the "AND" gates which
control the "SAMPLE" and the "ADD". Thus, only when the "MULTIPLIER SENSE" is a
11111 , will a "SAMPLE" and "ADD" command be generated. There will always be a "SHIFT"
command until the registers are "cleared". Note that there are two pulse generators--one
in the ADD CONTROL and one in the MULTIPLICATION CONTROL. The ADD CONTROL
pulse generator must be fast enough to complete the addition before another pulse is gener­
ated by the MULTIPLICATIO CONTROL pulse generator. In the 4-bit multiplier, the
ACCUMULATOR has 8 bits and therefore 256 "ADD" pulses must be generated before the
next MULTIPLICATION pulse. If the ADD pulse is too slow, the final answer will be
erroneous . After the multiplication process is complete, all registers will be "cleared"
and the final answer will be present in the ACCUMULATOR. The ACCUMULATOR must be
individually "cleared" digit by digit before entering the next two numbers in the MULTIPLIER
and MULTIPLICAND registers.

10. 9 THE DIVIDER

In division, we have four main numbers to consider. The first is the DIVIDEND, the
number to be divided. The second is the DIVISOR, the number which the dividend is to be
divided by. We will call these two number-s A and B, respectively. In other words, we
have A divided by B (A + B). The QUOTIENT, or third number, is the answer to the prob­
lem A ..;. B. It will be represented by Q. The fourth number is an intermediate number
which will be called the SUBTRAHEND for reference purposes (since we will be performing
successive subtraction of the DIVISOR from the DIVIDEND). This number is represented by
S. This intermediate number will be successively subtracted from the dividend to yield the
quotient. The SUBTRAHE D number is dependent on the divisor, and is a "sampling'' of
the divisor (or its complement) which occurs in successive "shifted" positions to the right.
Also, if and when the complement is s~btracted, the number "l" (last digit on the right)
must be further "sampled" and subtracted to complete the process of ''addition by subtraction
of complement" which will b described later.

Division is a complicated process since there is no way of using only logic circuits to
display a quotient of two numbers (as was done with the "full logic" multiplier). The primary
reason for this is that DIVISION BY ZERO IS IMPOSSIBLE. Therefore, no "truth table" can
be drawn up to represent division. Note the attempt as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

102

10. 9 THE DIVIDER (Continued)

A B A+B

0 0 (INDETERMINATE)

0 1 0

1 0 (INDETERMINATE)

1 1 1

Note that in the above example, two of the cases are indeterminate. Therefore, the
"truth table 11 method is out. However, division can be accomplished by successive sub­
traction of the DIVISOR from the DIVIDEND and by shifting the DIVISOR one position to the
right when it exceeds the DIVIDEND. An "OVERFLOW" sense is used to determine when
the DIVIDEND is less than zero after subtraction. When this condition exists, we must add
back the number which was subtracted and then shift the DIVISOR one position to the right.
Since numbers can only be subtracted from the ilividend, we must perform the equivalent
of addition by first subtracting the divisor complement, and then by further subtracting the
number "1" (last iligit on the right). The QUOTIE T is entered in digit-by-digit and shifted
left one position at a time until the process has been completed.

In order to convert the above processes to a computer function, the following "flow
chart" inilicates what must be done.

DIVlSIO
SUBROUTINE

SUB 2

SUB 3

SENSE DIVISOR REGISTER
DIGITS

0 YES

SUB l

SAMPLE DIVISOR COMPLEI\ T
INTO S REGISTER

SUBTRACT T
FROM DIVIDE GISTER

RESET OVERFLOW

" l 'I

wigfi
Stolen 2 Line Transparent

www.SteamPoweredRadio.Com

103
10. 9 THE DIVIDER (Continued)

The process begins with "START" and branches out in the direction of the arrows .
As long as the divisor contains at least one digit, the process will continue. The next
''branch" occurs when the "overflow" is 1101', indicating that the number subtracted from
the dividend was too large. Therefore, we must initiate four additional steps to add back
the number by "complement subtraction. 11 If the 11overflow11 is "1", then the four steps
above are not performed. The "overflow" is then reset, the divisor shifted right one
position, and the entire process repeated until the divisor is depleted of all its 111" digits .

In planning these functions with flip-flops and computer logic, we make use of four
registers: the DIVIDEND REGISTER "A'', the DIVISOR REGISTER "B", the SUBTRAHEND
REGISTER "S", and the QUOTIENT REGISTER 11Q". The controls will consist of a
SUBTRACT CONTROL "HALT" COMMAND with a fast pulse, a DIVIDE CONTROL "HALT"
COMMAND with a slow pulse, a DIVIDE CONTROL 3-BIT BINARY "UP" COUNTER to
control the "commands", and a "l" flip-flop to control the addition of the extra "l" in the
extreme right digit to compensate for "complement subtraction" addition.

The following logic diagram indicates the set-up for a 4-BIT DIVIDER. In order to
increase or decrease the number of binary digits (bits), add or remove the appropriate
number of flip-flops in the center position and adjust wiring and gating accordingly.

""' .
PIIT

DrVlD.I" OONTIIOL
.,KA 1.. r CXUfMAJrfO

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

104

10. 9 THE DIVIDER (Continued)

As in the case of the ''cumulative addition" multiplier, logic gates are used to control
all the individual commands. However, since there are more commands involved, we
must use a 3-bit "up" counter (instead of a 2-bit "up" counter as in the multiplier) to
accomplish these additional steps. The preceding logic diagram uses two "SAMPLE-AND­
HOLD11 functions (to "sample" the divisor, or its complement as necessary, into the
SUBTRAHE D regiAter), an "OVERFLOW'' sense, a "DIVIDE CONTROL" binary "up"
counter, two "HALT" COMMANDS with their respective fast and slow pulses, and the ftl 11

flip-flop . Note: the fast pulse must complete the subtraction before the next slow pulse
triggers the control. Other functions designed into this divider are: DIVIDEND DIGIT
SENSE LOGIC and SUBTRAHEND REGISTER CONTROL LOGIC.

After the project is wired up, division is accomplished as follows: Enter the DIVIDEND
number in register A and the DIVISOR in register B. Both numbers should be entered
FLUSH LEFT. Be sure that all other flip-flops have been reset. Then short together the
two pins indicated by the arrows in the DIVIDE CO TROL "HALT" COMMAND. The
division of the two nwnbers will be performed automatically and the process will stop after
division is completed. If division is attempted by "0", then the process will automatically
stop after the first complete cycle and a single "1'' will show up in the extreme right in the
QUOTIENT register. If two proper numbers have been divided, the answer will appear
FLUSH LEFT in the QUOTIENT register and will contain four bits. For instance, 1000 +
1100 will show up as 0101 in the QUOTIE T register. The binary point should be placed
accordingly. In this example, 1000 + 1100 = . 0101. If we had 1000 + 11. 00, the
answer would be 010. 1. 1000 + 1. 100 = 0101.

O. 10 THE SQUARE ROOTER

The binary square rooter is the most complicated project shown in this book. In order
to understand this project one must be fully familiar with the previous project: THE DIVIDER.
Refer back to chapter 6, if necessary, for discussion on extracting square roots. The
project described here is a 4-BIT SQUARE ROOTER which will operate on an 8-bit number
and extract its 4-bit square root . Let us illustrate by successive subtraction what happens
when we extract the square root of 3 (11) in binary (additional zeros are added on to make
8 bits).

@
✓ 11" 00,\00" 00

-01

10 00

CD - 1 01
11 00

@ -11 01
11 00 00

© - 1 10 01
1 0111

The e are several things that should be noted in the exafuple above. First, notice the
position of the ''0111 portions of each number that is subtracted from the RADICAND (the
number inside the radical '' ~ 11) . The 1101 11 always occurs at the extreme right and, in
each successive "subtraction" level position, the 1101" is shifted two positions to the right.
We start the subtraction process with the 1101" at the first level. If we can subtract, we enter
a "1" (circled) to the left and perform the subtraction as sho}YU above. Then we ''bring down"
the next two digits to the right. Next we shift the "01 11 twice to the right. Now, immediately
to the left of the "01" we enter the circled number above which gives us "101". In this case,
we can still subtract this 11101 11 from the remainder "1000" (left after the first subtraction) .

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

105

10.10 THE SQUARE ROOTER (Continued)

Therefore we enter a second "1" to the left of •r101 11 , perform the second subtraction, and
11 bring down" the next two digits. Again we shift 1101" twice to the right. We now "tack on"
to the left the two circled numbers above to obtain 111101n. This time we can not subtract
"1101" from the remainder "1100". Therefore we enter a "0" to the left of "1101" and
circle it. Now we 11bring down" the last two digits and again shift 110111 twice to the right.
We "tack on" to the left the three circled numbers above to yield "11001". Now we subtract
'11001" from the remainder 11110000" and enter a "1" to the left of "11001" and circle it.
The circled numbers "1101" represent the 4-bit square root of the 8-bit number "11000000".
Now, let us observe the positions of the numbers that were subtracted.

01
101

1101
11001

As can be seen, the extreme right 111" has shifted twice as we progress to each successive
level downward. Note also that the extreme left digit shifts one position to the right as we
progress to each successive level downward. Also, all other digits except the "01"
represent the square root digits calculated for all the levels above by successive subtraction
(or by attempted subtraction).

The key to the square rooter lies in the "01" which keeps shifting twice to the right
before a successive subtraction is performed (or attempted). We make use of this travelling
"01" as a control by setting up an 8-bit shift register called the TRAVELLING 11 111 ("Tl")
REGISTER. In fact, this register is set up so that, from reset, the travelling "l" will
automatically be entered in at the extreme left, shifted through the 8 positions, then shifted
out at the right . The register is "gated" so that a "halt" command is generated when the
11111 disappears to the right. Also, this "Tl" register controls "sampling" into the root
register. The ROOT REGISTER "R" is also an 8-bit right-shift register and the calculated
square root will appear in the last 4 digits to the right. There are also two more registers
needed: the SUBTRAHEND REGISTER "S" for intermediate subtraction, and the RADICAND
REGISTER "A" in which is entered the number to be square rooted. Both registers "S" and
"A" are 8-bit "up'' counters .

In addition, "SAMPLE-AND-HOLD" logic is used to "sample" registers "R" and "Tl"
simultaneously into register "S". Simultaneous "complement'' sampling of ''R" and "Tl" is
also performed. As in division, "complement subtraction" addition must be performed when
necessary, and the extra "l" must also be subtracted. "SAMPLE-AND-HOLD"logic controlled
by the "Tl" register will allow the OVERFLOW in the 11A" register to be "sampled" into the
ROOT REGISTER in the proper position before the ROOT REGISTER shifts one position to
the right. The ROOT REGISTER "R" shifts at half the rate of register "Tl". For every
shift of register "R" to the right, register "Tl" shifts two positions to the right.

The controls consist of 2 "halt" commands (one for SUBTRACTION HALT and the other
for ROOT HALT). A 4-bit "up" counter with gated logic is used as a "ROOT CONTROL" to
generate the square root commands.

The flow chart on p.107 indicates the process to be used for extracting the square root.

ote that three subtractions are performed. They are labelled "SUB 1", "SUB 2"
and "SUB 3 11 , respectively. The last two subtractions areE.2!_performed if the OVERFLOW
is a "1" after the first subtraction. The logic diagram for extracting the square root is as
follows:

http://www.SteamPoweredRadio.Com

w
w

w
.S

te
a

m
P

o
w

e
re

d
R

a
d

io
.C

o
m

I-' I-'
0 0
• 0)
0

~
;:i::
~

~
.S.118 l - ·••r-1·--·-·-· I~

1tro':':rR~~i 1~11 •• ~~~II R, +<a ~™ftL"II a. +Ki~ :'a

RADICA,HO
RJ:CllllTER "A'

11111 ,I. :'C::rn ':'?.iU I _ I t 11:.11 l~ r I ___

RQ@_~
JUI.T

"1" RESET

I ___ -_-_---~==--~::::_ _ _::::~ _ _::::~-~~==~=---==---.!--!1--__.::!f=:====~===-----·- --- 1 11 , i I I , , BUB I
" I " PLI.P--FI.OP l!IPUTI

l~
8
~
~
::tt
0
0
c:s
M"
:::,
s= a

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10. 10 THE SQUARE ROOTER (Continued)

SUB 2

SUB 3

RE IST ER "Tl "

UB l

MPLE COMPLEME

SUBTRACT REGISTER "S"
FROM REGIST ER " A"

START

SENSE UM:BER IN
REGISTER "Tl "

YE
SHIFT RIOHT

INTO REGISTER " R"

RESET "OVERF LOW"

SHIFT RIGHT
REGISTER " R"

REGISTER "Tl"

SENSE N MBER IN
REGISTER "T l"

107

NO

HALT

The ROOT CONTROL counter generates 16 commands, but only 13 are used. Commands
"1", "13", and "14" should not be used, but the "AND" gates are shown for reference only.
Command "1" must not be used so that commands "0" and "2" can properly double-shift the
"Tl 11 register. After the logic is connected up per the diagram, the root is extracted as
follows: First,enter in the number to be rooted in register 11A". The binary point reference
is after every second binary digit in register 11A 1'. To enter '\[i, enter 11111 in position Ar
For ,JTf. enter "1" in A8 and Ar For '1 101.1101, enter "1" in A 7 , A 5, A4 , A3, and A1.
For ✓10101001, enter 111" in A 8, A6 , A4 , and A1. The binary point is not calculated and
must be mentally placed after the operation. All other registers must be reset before the
square root can be extracted. Short together the proper pins (indicated by arrows) in the
ROOT CONTROL 11HALT11 COMMAND. The rooting process will automatically start and
stop when the rooting is finished. The square root then appears in the last four positions to
the right (R1 , R2, R3 , and R4} in the ROOT REGISTER.

The "FAST PULSE" in the SUBTRACT CONTROL must be fast enough to complete a
subtraction by counting (256 pulses minimum) before the next slow pulse is generated in the
ROOT CONTROL "SLOW PULSE1'. Also·, note that in the "sampling" process, not all

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

108

10.10 THE SQUARE ROOTER (Continued)

positions need be "sampled11 in the "R" and "Tl" registers. Therefore, bits R1, R3 , R5,

and R7 receive no "sample". Bits s2 and s8 also do not receive "sampling". In "sampling"
the two registers "R" and .. Tl" simultaneously, we "sample11 the equivalent of "R" v "Tl 11

[that is, we "OR" each bit position: {R1 v Tl1), {R2 v T12), (R3 v Tl3), (R4 v ;14)'....:tc.].
In "sampling" the complement of two registers, we "sample" the equivalent of "R"· "Tl"
[tha!.2_s, we 11AND" each complement bit position: (R1 · Tl1), (R2 · T12), (R3 · T13),
CR4 · TI4), etc.]. Where no "sample11 was necessary, the operation was simplified. The
reader will discover that there are many, many logic concepts in this square rooter project.

10.11 COMPARATORS

A comparator performs a comparison between the numbers entered in two registers
(which we will call 1A" and 11B11). The six comparisons that can be made are as follows:

1. A > B (A greater than B)

2. A < B (A less than B)

3. A = B (A equal to B)

4. A /: B (A unequal to B)

5. A ~ B (A greater than or equal to B)

6. A ~ B (A less than or equal to B)

The comparator is a SENSE function and no calculations (or computing processes) need
be performed. Comparisons can be accomplished through the use of pure logic gating and
the result is read out on one flip-flop called the COMPARATOR READOUT.

In performing the comparison, we ask the questions: Is A> B? Is A< B? Is A = B?
etc. If the answer to a question is YES, then the comparator readout is a 1'1". If the
answer is NO, then the comparator readout is a "0". Proper logic gating will be developed
through use of truth tables. The development of logic for all 6 cases above should be
fairly easy to follow because the reasoning in the English language is very similar to the
developed logic. However, the larger comparators require many, many "AND1' and "OR"
gates, as can be seen in the following explanations.

Let us consider two single digit binary numbers A and B (digits may be either "0"s or
"l"s). We can now set up a truth table for the 6 comparison functions as follows (this will
be referred to as the ~truth table):

A B A>B A<B A=B A/B A~B <
A = B

0 0 0 0 1 0 1 1

0 1 0 1 0 1 0 1

1 0 1 0 0 1 1 0

1 1 0 0 1 0 1 1

(A· B)v(A· B) (A· °13)v(A· B)
A•tf - (AvB) · (AvB) ('\vB)· (AvB) Avfl° AvB A B A·B

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

109

10. 11 COMPARATORS (Continued)
The logic functions in the bottom row of the table have the exact same truth tables as the

comparisons shown in the top row. Therefore the bottom row represents the equivalent
"AND" and "OR" logic expressions for the comparisons and may be directly substituted in
any logic equation.

10 . 11.1 THE "GREATER THAN" COMPARATOR

For single digit binary numbers A and B, we have already pointed out in the main truth
table that (A > B) = 4-\ · B). The logic diagram is as follows:

•••
C

• •

COMPARATOR
READOUT ----.... ••

A

•••
••• B.

---~-••
For 2-bit binary numbers A and B, we represent the digit positions as follows:

A2Al

B2Bl

ow, the number A2A1 is greater than B2B1 (A2A1 > B2B1) when(A2 > B2).2,! when (A2 ~ B2)
and (A1 > B1). This can be written logically as follows:

C = (A2 > B2)v [<A2 ~ B;· (A 1 > B1)]

The letter 11 C11 denotes 11 COMPARISON11 • We must now refer back to the main truth table and
substitute 11AND11 and 110R11 functions for A12:....!1). . A2 ~ B2), and (A 2 > B2' . Substituting,

we have: C = (A2· B2)v (A2 vB2) ·(A1. B1>]
The logic diagram for the above expression or e 2-bit comparator is as follows:

••• COMPARATOR •• ••
READOUT

C . A2 A .
1

• • ••• •••
A2Al> B2Bl ••• • ••

A2·~2

B2 Bl

•• ••

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

110

10. 11. 1 THE ''GREATER THAN" COMPARATOR {Continued)

For a 3-bit comparator, where A3A2A1 > B3B 2B 1 , this condition exists when (A3 > B3)

.2!. when (A3 ~ B3) ~ (A2 > B2} ,2!. when (A3 ~ B3} and (A2 ~ B2) and (A1 > B1}. This

can be written logically as follows:

C = (A3 > B3)v[(A3 ~ B3)• (A2 > B2)] v[(A3 ~ B3)· (A2 ~ B2)· (A1 > B1)]

Substituting "AND" and ''OR" comparison equivalents, we have:

C = (A3-ii3)v[(A:/ff'3)• (A2·B2)]v (A3vB3)• (A/B2)· (Ai'B1)]

The logic diagram for the above expression for the 3-bit comparator is as follows:

COMPARATOR
REAOOUT

•••
C

• •

A·B
3 3

•••

•••

For a 4-bit comparator, where A4A3A2A1 > B4B3B2B1 we have:

••

••• •••

••••••

••

C = (A4 > B4)v[(A4 ~ B4)· (A3 > B3)] v[(A4 ~ B4)· (A3 ~ B3)· (A2 > B2)]v [(A4 ~ B4)·

(A3 ~ B3)· (A2 ~ B2)· (Al> Bl}]

----Substitutine: "AND" and "OR" comparison equivalents, we have:

C = (A4 • B4)v[(A/i\}· (A3 · B3)]v [<A4 vi\)·(¾ vB3)· (A/B2)] v [<A4 vB4)• (A3vB3)•

(A 2 vB2) · (A1 · B1)]

The logic diagram for the above expression for the 4-bit comparator is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10. 11. 1 THE "GREATER THAN" COMPARATOR (Continued)

COMPARATOR
READOUT

•••

-

-

I

•••

•••

•••

••• L......J

,

I
• ••

••• • ••
oee

*Note : 5 or more inputs may be accomplished by "expanding" a 4-input gate
(i.e. , by using more than one gate) as follows :

----iEl• -.--I
5 INPUTS 5 INPUTS

The above example also applies to "OR" gates.

111

•••

◄ •••

The general logic equation for an 11n11-bit 11greater than" comparator is as follows:

C = (A > B) v [(A 2! B) · (A l > B . 1)] v [(A ~ B) · (A l ~ B 1) · (A 2 > B 2)] v n n n - n n- n- n - n n- n- n- n-

[(An~ Bn)· (An-1 ~ Bn-1)· (An-2 ~ Bn-2) ' (An-3 > Bn-3>] v[{An~ Bn) · (An-1~ Bn-1)·

(A ~ B) · (A ~ B) · (A 4 > B 4)] v v
n-2 n-2 n-3 - n-3 n- n- [(A ~ B)· (A ~ B)·

n - n n-1 - n-1

•• . . •. . {A3 ~ B3)• (A2 ~ B2) · (Al> Bl)]

Note that the last term within each set of brackets is " > 11 while all other terms are " ~ ".
Also, each successive set of brackets contains one more term than the previous set. The
very first term in the expression is always A > B . The "terms" are those expressions
within each set of parentheses. After substiillting the equivalent "AND" and "OR" functions,
the general equation becomes as follows :

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

112

10. 11. 1 THE "GREATER THAN" COMPARATOR (Continued)

C = (A • B)v [<A vB) · (A 1, B 1)] v [<A vB) · (A 1vB 1) · (A 2• B \] v n n n n n- n- n n n- n- n- n- 2'

[(A vB)· (A lvB 1>· (A 2vB 2>· (A 3· B a>] v r(A vB)· (A lvB 1>· n n n- n- n- n- n- n- r n n n- n-

(A 2vB 2)•(A 3vB . 3)•(A 4.B 4)]v•. v[(A vB) · (A 1vB 1)• n- n- n- n- n- n- n n n- n-

...•.. · (A3vB3)· (A2vB2)· (Ai" B1}]

10.11. 2 THE "LESS THAN" COMPARATOR

The "less than" comparator follows very closely to the "greater than" comparator and
would be identical if A were substituted for B and B substituted for A. In the main truth
table, we see that (A< B) = (A· B). For single digit binary numbers A and B, the logic
diagram is as follows:

e e e COM PARA TOR
READOUT

C

• •

•••
A

-....
B

•••

For 2-bit binary numbers A and B, we represent the digit positions as follows:

Now, the number A2A 1 is less than B2B1 (A2A1 < B2B1) when (A 2 < B2) or when
(A2 ~ B2) and (A1 < B1). This can be written logically as follows:

C = (A 2 < B2)v [<A2 ~ B2)· (A1 < B1)]

The letter "C" denotes "COMPARISON". We must now refer back to the main truth
table and substitute 11AND" and 1'0R" functions for (Al< B1), (A2 ~ B2), and (A2 < B2).
Substituting, we have:

The logic diagram for the above expression for the 2-bit comparator is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

113

10.11. 2 THE "LESS THAN" COMPARATOR (Continued)

••• COMPARATOR • •• • •• READOUT

C A2 Al

• • •• ••
A2Al < B2Bl - •• ••

A2· B2

B2 Bl •

••• • ••

For a 3-bit comparator, where A3A2A1 < B3B2B1 , this condition exists when (A3 < B3)

£!: when (A3 ~ B3) and (A2 < B 2) £!: when (A3 ~ B3) and (A2 ~ B2) and (A1 < B1) . This

can be written logically as follows:

C = (A3 < B3)v [(A3 ~ B3)· (A 2 < B2)) v [(A3 ~ B3)· (A 2 ~ B 2)• (A1 < B1)]

Substituting "AND" and "OR" comparison equivalents, we have:

C = (A3 . B3)v [<A3 vB3) · (A2 • B2) v [(A3 vB3) · (A2 vB2) · (A1 · B1)]

The logic diagram for the above expression for th 3-bit comparator is as follows:

COMPARATOR
READOUT

•••
C

• •

• ••

•••

••• •••

••

••

••• •••

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

114

10. 11. 2 THE "LESS THAN" COMPARATOR (Continued)

For a 4-bit comparator, where A4A3A2A1 < B4B3B2B1 we have:

C ::::: (A4 < B4)v [tA4 ~ B4)• (A3 < B3)Jv [<A4 ~ B4) · (A3 ~ B3)• (A2 < B2)) v [<A4 ~ B4) ·

(A3 ~ B3)· (A2 ~ B2)· (Al < Bl))

Substituting "AND" a.nd "OR" comparison equivalents, we have :

C = (A4• B4)v [<A4 vB4)· {i\ · B3)] v [<A4 vB4)• (A3 vB3)· (A2 · B2)] v [tA4 vB4) · (A3 vB3) ·

(A2vB2)· (Ai' B1)]

The logic diagram for the above expression for the 4-bit comparator is as follows:

COMPARATOR
READOUT X4vBA ~ ••• • •• ••• • •• • •• ~;

C A4 t t> A3 t > A2 1 > A1 t -(l~ .4 •• .. A3vB3..o1 =•• ◄••· 4 aee i ►•• -
• - """'-... !

~ r

4~ ::- ~ -
T - ..o!

N • ~ - I /:Q
C')

""""--- ! /:Q

"" -fl
- "Iii =•• o•• 4 ••• /:Q A2vB2 ◄••· V

< - 17 B4 1 > B3 t > B2 t ~ B1 t N

<
C')

- ~I < A4 - B4 ._ ••• ••• ••• • •• "" < -

The general logic equation for an 110 11-bit "greater than" comparator is as follows:

C .,. (A < B)v [<A ~ B) · (A l < B 1)] v ~A ~ B) · (A l ~ B 1) · (A 2 < B 2)) v n n n n n- n- ~ n n n- n- n- n-

[(A ~ B) · (A l ~ B 1) · (A 2 ;;i B 2) · (A 3 < B a>] v [<A ~ B .) · (A l ~ B 1) · n n n- n- n- n- n- n- n n n- • n-

(A 2 ~ B 2) · {A 3 ~ B 3) · (A 4 < B 4)] v v f(A ~ B) · (A l ~ B 1} ·
n- n- n- n- n- n- ~ n n n- n-

.. (A3 ~ Ba) · {A2 ~ B2)· (Al < B1>]

>

>

Note that the last term within each set of brackets is " < " while all other terms are '' ~ " .
Also, each successive set of brackets contains one more term than the previous set. The
very first term in the expression is always A < B . The "terms" are those expressions
within each set of parentheses. After substitRting fiie equivalent "AND" and "OR" functions,
the general equation becomes as follows:

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

116

10. 11. 3 THE "EQUAL TO" COMPARATOR (Continued)

A2Al

B2Bl

Now, the number A2A1 is equal to B2B1 (A 2A 1 = B2B1) only when A2 = B 2 and A1 = B1.

This can be written logically as follows:

C = (A = B) · (A = B)
2 2 1 1

The letter "C" denotes "COMPARISON" . We can now substitute the expression (AvB) · (AvB)
for A = B (A1 = B1 and A 2 = B 2) as follows:

C = (A = B) · (A = B)
2 2 1 1

C = [<A 2vB2)• (A2vB2)] · ~A1 vB1)· (A1 vB1)]

I C = (A2 vB2) · (A2 vB2) • (A1 vB1) · (f1 vB1) I (ASSOCIATION)

(AL # 1)

The logic diagram for the above expression for the 2-bit comparator is as follows:

COMPARATOR

••• READOUT

C

• •

B3B2Bl

A2vB2

i\vB2

A vB
1 1

••
A2

••

ow, the number A3A 2A 1 is equal to B3B 2B1 (A3A2A 1 = B3 B2B1) only when A3 =
B3 and A2 = B 2 and A1 = B1. This can be written logically as follows:

C = (A3 = B3)• (A2 = B2)• (A1 = B1)

••
Al .

••

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10. 11. 3 THE "EQUAL TO" COMPARATOR (Continued)

Substituting "AND" and "OR" functions, we have:

C = [<A3 vB3) · (A3 vB3)] · [(A2 vB2) · (A 2 vB2)] · [~A1 vB1) · (A1 vB1)]

C = (A vB) · (A3 vB3)• (A 2v1\)· (A.2 vB2)• (A1 vB1)• (A1 vB1)

The logic diagram for the above expression for the 3-bit comparator is as follows:

COMPARATOR
READOUT

•••
C

• •

Substituting "AND" and "OR" functions, we have:

117

C = [(A 4 vB 4) · (A 4 vB 4)] · [(A3 vB3) · (A3 vB3)] · [<A2 vB2 · (A2 vB2)] . [<A1 vB1) • (A1 vB1)]

C = (A4vB4)· (A4vB4), (A3vB3)· (A3vB3), (A2vB2)· (A2vB2)· (A1v:i\) · (A1vB1)

The logic diagram for the above expression for the 4-bit comparator is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

118

10.11. 3 THE "EQUAL TO" COMPARATOR (Continued)

- ,.,
A4vB4 _/ i

• COMPARATOR
""

REAOOUT - ,., I

••• A4vB4./' i o•• ••• ◄••· oe• •
"" C. A3vB 3 ...t. A4 . A3 . A2 t > Al .

~; ., •• :•• , .. o•• oee - "" A3vB3 ,.,_ I

17=- • • .
... ,_ ,,,,,_

,-4

j:Q • <N • - • j:Q ·- A2v
.

C"') - 2 ... j:Q
I ,qt

,,,,_
j:Q 'T~: =•• ••• ◄••· oee
II

.... A2vB2,

~ .,,,_ B4 e> B3 t > B2 t B1 t ~ < i C"')

< A vB_ • "<t' -~•· , .. i, •• ◄-•• < 1 1 ..,
~ J
i

A.1vB1 • -....

The general equation for an "n"-bit "equal to" comparator is as follows:

C = (A = B)· (A l = B 1), (A 2 = B 2)- (A 3 = B 3)· · (A2 = B2)· (A1 = B1) n n n- n- n- n- n- n-

The transformed "AND" and "OR" logic equation, after substitution, is:

C = (A v'fl)· (A vB)· (A 1vB 1)· (A 1vB . 1)· (A 2vB 2)· (A 2vB 2)• (A 3vB 3)· n n n n n- n- n- n- n- n- n- n- n- n-

(An_3 vBn_3) · • (A2vB2)· (A2vB2)· (A1vB1) • (A1vB1)

The order and transformation of terms is very straightforward for the "equal to"
comparator.

10.11. 4 THE "UNEQUAL TO" COMPARATOR

Let us again consider the two single digit binary numbers A and B. Now we want to
sense when A is unequal to B, or A I B. We will again set up a one-bit truth table (see
also main truth table) for A 'I Bas follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

119

10.11.4 THE "UNEQUAL TO" COMPARATOR (Continued)

A B A/B (A· B)v(A- B) (AvB)· (AvB)

0 0 0 0 0

0 1 1 1 1

1 0 1 1 1

1 1 0 0 0

The last two entries (A· B)v(A· B) and (AvB)· (AvB) represent logic functions which have
the same truth table as A I= B and therefore all three expressions are equivalent. A+ B
may be represented either by (A· B)v(A · B), or by (AvB) · (AvB). Note that these are the
exact same logic expressions for A+ B, A - B, and A • B. If we have only one flip-flop
for A and one flip-flop for B, the comparison is accomplished as follows:

••• COMPARATOR •• ••• COMPARATOR • • READOUT READOUT

C • A A .

•• • • •
•• ••

B

•• ••

Either one of the preceding logic diagrams will determine the A t B comparison. Further
discussion will be with the expression (A· B)v(A· B).

For 2-bi t binary numbers A and B, we represent the digit positions as follows:

A2A1

B2Bl

Now, the number A~1 is unequal to B 2B (A2A1 f B2B1) when A f B .Q.1: A j B .
Th. b ·tt 1 . 1 2 2 1 1 1s can e wn en og1cally as follows :

C = (A 2 f B2)v(A1 f B1)

The letter "C11 denotes "COMPARISON". We can now substitute the expression (A· B)v(A· B)
for A # B (A1 f B1 and A2 "f B2) as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

120

10. 11. 4 THE "U EQUAL TO" COMPARA. TOR (Continued)

C = (A2 I B~v(A1 / B1)

C = [(A2 · B2)v(A2 · B2)] v [<A1 · B 1)v(A1 · B1)]

IC = (A2 · B~v(A2 · B2)v(A1 · i 1)v(X1 • B1) I (ASSOCIATION: AL #2)

The logic diagram for the above expression for the 2-bit comparator is as follows:

COMPARATOR

••• READOUT

C

• •

A2·B2

A2· B2

A·B
1 1

For a 3-bit comparator, where A3A2A1 1' B3B2B1 we have:

A3A2Al

B3B2Bl

•• ••
A2 Al

•• ••

Now, the number A3A2A1 is unequal to B3B2B1 (A3A2A1 f B3B2B1) when A3 / B3 or
A2 f. B2 or A != B • This can be written logically as follows:

- 1 1

Substituting "AND" and "OR" functions, we have:

C = ~A3 · ~ 3)v(A3 · B3~ v [<A2 · B2)v(A2 • B2ij v [<A/B1)v(A1 · B1)]

C = (A3 · B3)v(A3 · B3)v(A2 · B2)v(A2 • B2)v(A1 · B 1)v(A1 · B1)

The logic diagram for the above expression for the 3-bit comparator is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10.11. 4 THE "UNEQUAL TO' ' COMPARATOR (Continued)

COMPARATOR
READOUT

•••
C

• •

A ·B
3

For a 4-bit comparator, where A4A3A2A 1 f B4B3B2B1 we have:

C = (A4 ! B4)v(A3 -I B3)v(A2 F B2)v(A1 /. B1)

Substituting "AND" and "OR" functions, we have:

••

••

••

••

C = [<A4· B4)v(A4· B4~ v [(A/B3)v(A3 · B3~ v [<A/B2)v(A2· B2)] v [<A1 · i\)v(A1· B1~

C = (A4• B4)v(A4 · B4)v(A3 · B3)v(A3 · B3)v(A2· B2)v(A2• B2)v(A1· B1)v(A1 • B1)

The logic diagram for the above expression for the 4-bit comparator is as follows:

121

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

122

10. 11. 4 THE "UNEQUAL TO" COM PARA. TOR (Continued)

A4 - B4Li

\.. ! COMPARA. TOR -
'RF., DOUT

IA ·B/1 I

••• 4 • oee ••• o•• o•• \. ~
C 41 l\3•1t= A4 41 > A3 t > A2 t > A1 t

~! •••• ~-- • •• o•• • ••• Ar(!
I

~ - i
~ =

=
.-t -

1f1 i:Xl -
N -i:Xl ·-

~ ~M "llli
~

"" I

~ =•• ••• -~-- i••· it-- - .
.-t A2· B2--<

B4 t > B3 t > B2 41 > Bl 41 N

C1 <
M

< A·B~ "" •foe•• ••• o•• i••· < 1 1

C1 I

A
1 ·B1'\._J~

The general equation for an "n"-bit "unequal to" comparator is as follows:

C = (An f B0)v(A0 _ 1 /. Bn_ 1)v(An_ 2 -/= Bn_2)v(An_3 ~ Bn_3)v v(A2 ~ B2)v(A1 ! B1)

The transformed "AND11 and 11OR" logic equation, after substitution, is:

C = (A · B)v(A · B)v(A 1 -B 1)v(A . 1- B 1)v(A 2-B 2)v(A 2· B 2)v(A 3 · B 3)v n o n n n- n- n- n- n- n- n- n- n- n-

The order and transformation of terms, like the "equal to" comparator, is also very
straightforward for the "unequal to" comparator.

10.11. 5 THE "GREATER THAN OR EQUAL TO" COMPARATOR

>

>

For single digit binary numbers A and B, we want to sense when A is greater than or
equal to B (A~ B) . Referring back to the main truth table, we note that A ~ B is represented
logically by (AvB). The logic diagram is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10.11. 5 THE "GREATER THAN OR EQUAL T011 COMPARATOR (Continued)

e e e COMP ARA TOR
READOUT

C e

• •

..... -
A •

•••
••• B.

------t,a•·

123

From this point on, the general discussion follows closely to that of the "greater than"
comparator except that the last term is 11A1 ~ B 111 instead of 11A1 > B 111 • For 2-bit binary
numbers, the number A2A1 is greater than or equal to B 2B 1 (A2A1 ~ B2B1) when A2 > B 2
£!: when A2 ~ B 2 and A1 ~ B1. This can be written logically as follows:

C = (A2 > B2)v ~A2 ~ B2)· (A 1 ~ B1)]

Substituting 11AND11 and "OR" functions for A2 > B2 , A2 ~ B2, and A1 ~ B1 , we have:

C = (A2• B 2)v ~A 2vB2)· (A1 vB1)]

The logic diagram for the above expression for the 2-bit comparator is as follows:

COMPARATOR ---
••• READOUT •• ••

C

• • ••• •••

••• • ••

•• ••

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

124

10, 11. 5 THE "GREATER THAN OR EQUAL TO" COMPARATOR (Continued)

For a a-bit comparator, AaA2A1 ~ BaB2B1 when Aa > Ba .Q!: when Aa ~ BS and

A2 > B2 .Q!: when Aa ~ Ba and A 2 ~ B2 and A1 ~ B1. This can be written logically as
follows:

C = (Aa > Ba)v [<Aa ~ Ba)· (A2 > B2>] v [(Aa ~ Ba)· (A2 ~ B2)· (Al~ B1>]

Substituting "AND" and "OR" functions, we have:

C = (Aa · Ba)v [<Aa vBa)· (A2· B 2)] v [<As vBa)· (A2vB2}- (A1 vi\>]

The logic diagram for the above expression for the a-bit comparator is as follows:

COMPARATOR
READOUT

•••
C

• •

••

••• ••••••

••• ••• •••

••

For a 4-bit comparator, where A4AaA2A1 ~ B4BaB2B1, we have:

C = (A4 > B4)v [<A4 ~ B4)' (Aa > Ba>] v [<A4 ~ B4)· (Aa ~ Ba)· (A2 > B2>] v [<A4 ~ B4}·

(Aa ~ Ba)· (A2 ~ B2)· (Al~ Bl)]

Substituting "AND" and "OR" functions. we have:

c ;; (A4 • B4)v 8A4 vB4)• (Aa· Ba>] v [<A4 vB4)• (As vBa)· (A 2• B2)] v [<A/B4) · (AS vBa)·

(A2vB2)• (A1vii1>]
The logic diagram for the above expression for the 4-bit comparator is as follows:

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

125

10. 11. 5 THE "GREATER THAN OR EQUAL TO" COMPARATOR (Continued)

COMPARATOR
READOUT

••• A4vi34 ~
L"i =•• ••• ◄••· ◄••· -

rt' ~-C t > A4 . > A3 t > A2 t > Al t ..
t avB~ - -◄

•◄ •• r(i .I 1 ► L.(; • •• ••• • •• • •• _
.- A. 2 vB2..

,;I_

·~~
/ I

"-~
""

C")
~ Ill

'<ti • I
Ill

A1 vB;---.. ! ••• ••• ••• ••• All
,-t

<
B4 t > B3 t > B2 t > CN r:-- Bl t <

C")

< A ·BX.! '<ti .;ee o•• 4 ••• o•• < 4 4 -

The general logic equation of an "n"-bit "greater than or equal to" comparator is as
follows:

C = (A > B }v rcA ~ B) · (A 1 > B 1)7 v [(A ~ B) · (A 1 ~ B 1) • (A 2 > B 2)7 v
n n ~ n n n- n- ~ n n n- n- n- n- ~

r(A ~ B) · (A l ~ B 1> · (A 2 ~ B 2> · (A 3 > B 3~ v r(A ~ B) · (A l ~ B 1> · ~ n n n- n- n- n- n- n- ~ ~ n n n- n-

(A 2 ~ B 2) • (A 3 ~ B 3) , (A 4 > B 4}] v v [(A ~ B) · (A l ~ B 1) ·
n- n- n- n- n- n- n n n- n-

••••.• • (AS~ B3) . {A2 ~ B2). (Al ~ Bl)]

ote that the last term within each set (except the last set} of brackets is '' > "while all
other terms are"~'- The last set of brackets has all 11~• terms. Also, each successive
set of brackets contains one more term than the previous set. The very first term in the
expression is always A > B . The 11terms" are those expressions within each set of

n n
parentheses . After substituting the equivalent "AND" and 11OR11 functions, the general
equation becomes as follows:

C = (A , B)v r(A vB) · (A 1· B 1>] v r(A vB)· (A lvB 1>· (A 2· B 2>] v [<A vB)· n n ~ n n n- n- ~ n n n- n- n- n- n n

(A 1vB 1) · (A 2vB 2)- (A 3 -B 3)7 v [<A vB .) · (A 1vB 1)· (A 2vB 2)•
n- n- n- n- n- n- ~ n n n- n- n- n-

(A 3vB a>· (A 4' B 4>] v v r(A vB)· (A lvB 1>· · (A3vB3)· (A2vB2) · n- n- n- n- ~ n n n- n-

(A1 vI\>]

>

>

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

126

10.11. 6 THE "LESS THAN OR EQUAL TO" COMPARATOR

For single digit binary numbers A and B, we want to sense when A is less than or
equal to B (A~ B). Referring back to the main truth table, we note that A~ B is
represented logically by (AvB). The logic diagram is as follows:

••• COMPARATOR
REAOOUT

C •

• •

•••
A •

B

•••

From this point on, the general discussion follows closely to that of the "less than"

comparator except that the last term is 11A1 ~ B111 instead of 11A1 < B1". For 2-bit binary
numbers, the number A2A1 is less than or equal to B2B1 (A2A1 ~ B2B1) when A2 < B2.£E
when A2 ~ B2 and A1 ~ B1. This can be written logically as follows:

C = (A2 < B2)v [<A2 ~ Bt · (A1 ~ B 1)]

Substituting "AND" and 11OR11 functions for A2 < B2, A2 ~ B2 , and A1 ~ B1, we have:

C = (A2· B2)v [cX2vB2) · (i\vB1)]

The logic diagram for the above expression for the 2-bit comparator is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

10.11. 6 THE "LESS THAN OR EQUAL TO" COMPARATOR (Continued)

COMPARATOR -----
••• READOUT ••• •••

C

• • .._ • •

••

••• • ••

For a 3-bit comparator, A3A2A1 ~ B3 B2B1 when A3 < B3 or when A3 ~ Ba and

A2 < B2 or when A3 ~ Ba and A2 ~ B2 and A1 ~ B1. This can be written logically as

follows:

C = (Aa < Ba)v [<Aa ~ Ba) ' (A2 < B2)] v [(A3 ~ Ba)· (A2 ~ B2)· (A1 ~ B1)]

Su · · and "OR" functions we have:

C = (Aa · B3)v (A3vBa)· (A2• B2) v (A3vB3) - (A2vB2)• (A1 vB1)

The logic diagram for the above expression for the a-bit comparator is as follows:

127

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

128

10.11. 6 THE "LESS THAN OR EQUAL TO" COMPARATOR (Continued)

COMPARATOR
READOUT

•••
C

• •

•••••••••

••

••

••• ••• •••
For a 4-bit comparator, where A4A3A2A1 ~ B4B3B2B1 , we have:

C = (A4 < B4)v [(A4 ~ B4)• (A3 < B3}] v [(A4 ~ B4)• (A3 ~ B3)· (A2 < B2)] v [<A4 ~ B4)·

(A3 ~ B3)· (A2 ~ B2)· (Al~ Bl)]

Substituting "AND" and 1'OR" functions, we have:

C = (A4-B4)v (A4vB4)·(A3-B3) v (A4vB4}·(A3vB3)-(Az-B2) v[(A4vB4)•(A3vB3)•

(A2vB2)· (i\vB1ij
The logic diagram for the above expression for the 4-bit comparator is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

129

10.11. 6 THE "LESS THAN OR EQUAL TO" COMPARATOR (Continued)

COMPARATOR
READOUT

••• A vB ,. ••• ••• • •• • •• :~;
> C e rt:-- - --.., A4 t A3 t > A2 t > Al . - A3vB,3. -

•◄ •• ,/. -foe•• • •• ◄-•• 4 •••

"! -(i - - w ,_ A2vB~

N ·NJ• i • ~. --..,
/:Q ;;;.

M ~
/:Q -~ • /:Q

A1vB1 • -- f-e•• oee i••· o•• VII
,-t

<
B4 •> B3 e B2 41 > Bl t CN n--<

M

< A4·B4v"" ••• ~ ••• ••• ••• <

The general logic equation for an 1'n"-bit "less than or equal to" comparator is as
follows:

C = (A < B)v f(A ~ B) · (A < B 1)1 v [<A ~ B) · (A l ~ B 1)- (A 2 < B 2)1 v
n n ~ n n n-1 n- ~ n n n- n- n- n- ~

r(A ~ B) · (A l ~ B 1) · (A 2 ~ B 2> · (A 3 < B 3>] v r{A ~ B) · (A l ~ B 1> · ~ n n n- n- n- n- n- n- L1 n n n- n-

(A 2 ~ B 2) · (A 3 ~ B 3)- (A 4 < B 4)] v [<A ~ B) · (A l ~ B 1) ·
n- n- n- n- n- n- n n n- n-

. (A3 ~ B3) · (A2 ~ B2)· (Al ;;a Bl)]

>

Note that the last term within each set (except the last set) of brackets is " < " while all
other terms are "<1• The last set of brackets has all"<" terms. Also, each successive
set of brackets contains one more term than the previo~ set. The very first term in the
expression is always A < B . The "terms" are those expressions within each set of

n n
parentheses. After substituting the equivalent "AND0 and "OR" functions, the general
equation becomes as follows:

C ,= (A . B)v r(A vB }· (A 1· B 1>1 V [ex vB }· (A lvB 1>· (A 2· B 2>1 V [<X vB }· n n ~ n n n- n- J n n n- n- n- n- J n n

(A lvB 1>· (A 2vB 2>· (A 3' B 3)1 V r(A vB }· (A lvB 1>· (A 2vB 2>· n- n- n- n- n- n- '.t ~ n n n- n- n- n-

(A 3vB a>· (A 4" B 4)1 v •...•. V r(A vB)· (A lvB 1>· (A3vB3)· (A2vB2)· n- n- n- n- J ~ n n n- n-

(A 1 vB1)]

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

130

10. 11. 7 GENERAL COMPARISON

This section interrelates all the six individual comparators with respect to each other.
We now introduce COMPARISON DIAGRAMS for one-bit, 2-bit, and 3-bit numbers. These
blocks show all the possibilities for comparison.

1 = B2B] A2A1 > B

00 01 10 11
A = :a A >B 00 00 00 00

0 1 00 01 10 11
0 0 01 01 01 01
0 1 00 01 10 11
1 1 10 10 10 10

A <B A = B 00 01 10 11
11 11 11 11

rn 1 < B2Bl k\2Al =

Al = B3B2Bl A3A2Al > B3B2Bl

000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000
000 001 010 011 100 101 110 111
001 001 001 001 001 001 001 001
000 001 010 011 100 101 110 111
010 010 010 010 010 010 010 010
000 001 010 011 100 101 110 111
011 011 011 011 011 011 011 011
000 001 010 011 100 101 110 111
100 100 100 100 100 100 100 100
000 001 010 011 100 101 110 111
101 101 101 101 101 101 101 101
000 001 010 011 100 101 110 111
110 110 110 110 110 110 110 110
000 001 010 011 100 101 110 111
111 111 111 111 111 111 111 111

A3A01 < B3B2Bl A3A2Al =

Note that the "A = B" region is the upper-left-lower-right diagonal while the "A > B"
region is to the upper right of the diagonal and the "A < B" region is to the lower left of the
diagonal. The above diagrams include all possibilities of comparison. If we pick one cell
at random from each diagram, this cell may represent A = B, or A > B, or A < B. Thus
we can represent the total possibilities of comparison (C-r> as follows:

ICT = (A = B}v(A > B)v(A < B) I

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

131

10. 11. 7 GENERAL COMPARISON (Continued)

In order to determine a region of comparison, we must set at least one of the "OR"-ed
comparison terms equal to zero. The term set equal to zero will then drop out. The
single deletion possibilities are:

C = (A = B)v{A > B)

This is the same as A~ B.

C = {A = B)v(A < B)

This is the same as A ~ B.

C = {A > B)v(A < B)

This is the same as A f B.

{A < B) deleted

(A > B) deleted

(A = B) deleted

If we delete any two terms, this will isolate the (A = B), {A > B), or {A < B) regions
depending on which two terms are deleted.

Also, we can delete all comparison possibilities leaving nothing. However, we can
negate CT as follows:

CT = (A = B)v{A > B)v(A < B)

Using DeMorgan's Theorem, we obtain:
-- --CT = (A = B)• {A > B)· {A < B)

Now,in order to determine a comparison, we must again set at least one of the "AND"-ed
comparison terms equal to zero. Then the term set equal to "0" becomes 110'11 or 11111 and
drops out when "AND"-ed with the rest of the expression. The single deletion possibilities
are:

- - --c = (A = B) · {A > B) (A < B) deleted

Now let us substitute the "AND" and "OR" comparison functions and simplify the expression.

C = [{AvB)· {AvB)] · (AvB)

= [{Av~)v(AvB)] · (A· B)

= [(A· B)v(A· B)] · (A· B)

= (A· B)
IC = A < B I Substituting back the comparison expression.

C = (A = B)· (A>B) and negate again:

c = (A=l3)· {A > B)

C = {A = B)v(A > B)

IC = (A~ B) I
Using DeMorgan's Theorem.

Now, we go back to

This means that if we wire up a comparator for A~ B, we also have an A< B comparator
by reading out C instead of C.

The other possibilities are:

C = (A = B) · (A < B)

C = (A > B). (A < B)

Also, deleting two terms, we have:

(A > B) deleted

(A = B) deleted

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

132

IO. 11. 7 GENERAL COMPARISO (Continued)

C = (A = B) (A > B) and (A < B) deleted

C = (A > B) {A = B) and (A < B) deleted

C = (A < B) (A = B) and (A > B) deleted

By substituting and working out the "AND" and "OR" logic for the above expressions,
we can show that we have a different comparison by reading out C instead of C. The "C"
and 11 C'11 comparators are as follows:

1f C = (A > B) then C = (A~ B)

If C = (A< B) then C = (A~ B)

If C = (A = B) then C "' (A/ B)

1f C "' (A f B) then C = (A = B)

If C = (A~ B) then C = (A< B)

1f C = (A~ B) then C = (A> B)

Thus, if we build one comparator, we have actually built two! ! !

The comparison diagram may be used to prove compari son identities in the same
manner as a truth table. We will use the 2-bit comparison diagram for the discussion.
The quantity A is represented by marking all cells with a dot ''e" that have an A1 (i. e. ,
A = I). The Jumbers are not shown here again, but should be referred back to the main
cJmparison diagram. A1 is represe.nted as follows:

• •
• •
• •
• •

Refer back to the main comparison diagram and note that each cell with A1 = 1 is dotted.

If we represent A1 · B1, we must dot all cells with A1 = B1 = I. The A1 and B1 must be
identical in all dotted cells.

• •
• •

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

133

10.11. 7 GENERAL COMPARISON (Continued)

To represent A1 vB1, we must dot all cells with A1 = 1 and all cells with B1 = 1, but in this

case we look for either one case or the other, or both .

• •
• • • •

• •
• • • •

The following examples show cell plots of various comparison expressions:

• • • • • • • • • • • • • •

When we "OR" two or more comparison diagrams, we merely superimpose the diagrams.
The diagram to the right shows the 11OR11-ed representation of the first three. Note that
the A > B region is filled. When a comparison region is filled, and the remaining cells
are open, the "OR"-ed expression represents an identical comparison expression as is the
case for the above example of A > B. ote that for an equivalent comparison expression,
all cells in a comparison region must be filled and the remaining cells must be open. If
this condition does not exist, then the expression does not represent a comparison identity.

_5:ons~er the examples (A/B2), (A2• B2), (A1 · B1), (A1 · B1) and (A2· B2)v(A2• B2'v
(A1 · B1)v(A1 · B1) as shown below.

• • • • • • • • • • • • • •
•
•

• • • • • • • • • • • •
(A2· B2'v(X2· B2)v

(A1 · B 1)v(A1 · B 1)

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

134

10. 11. 7 GENERAL COMPARISO (Continued)

The 11OR11-ed function to the right has the regions filled which represent A > B or A < B.
This is the same as A A t B B or A I B for which the expression shown is a true identity.

2 1 2 1
If we want to superimpose cells by 11AND11-ing, the process becomes more complicated

and we must use more than a dot. For instance, if we represent one expression by dots,
the other by "x"s, another by '0"s and another by 11+11s, then we can only count a super­
imposed cell as Wl,eg when all different symbols are superimposed on each other. Consider
(A2 vff2), (A2 vB2), (A/1\), (A.1 vB1), and (A/~ 2) · (A.2 vB2) • (A1 vB1) • (A.1 vB1). The
comparison diagrams are as follows :

• • • • (1 1

• • • • ...

• • '7 1

• •

~ +
"""I , + + +

+ !+

+
+
+
+

+
+

(A2vB2)• (A2vB2)•

(A1 vB1)• (A1 vB1)

The "AND"-ed function to the right has only the top-left-bottom-right diagonal which
contains all 4 superimposed symbols. This is the 11=11 diagonal and hence this represents
A 2A1 = B2B1 or A = B for which the expression shown is a true identity.

10. 12 THE TIME MACHJNE

ow we are ready for a fantastic adventure in time--not in the sense of going back in
time, but in the sense of keeping and determining time. In order to get an idea of the vast
capability that flip-flops have for determining time, let us set up a 40-bit binary "up"
counter and trigger the first flip-flop at a rate of one pulse per second.

#40

ra ra ra ra •
1

PULSE
PER

SECO D

How long would it take the last light to come on ? An hour? A day? Maybe a year? The
true, but fantastic answer is that you will never live long enough to see it come on I ! I I
Neither will your grandchildren--nor their grandchildren. either will 200 successive
generations of your descendents 11 ! ! I Let us assume that we started the counter going on
zero hour, Monday, January 1, 1968--the year this book was written. Light #40 will then
come "on" on Sunday, May 2, 19388 A. D. I! 1 The following table shows the light numbers
and the almost unbelievable dates they will come on!

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

135

10. 12 THE TIME MACHINE (Continued)

TIME 11ON" DATE 11ON11 DAY OF
LIGHT# DAYS HRS:MIN:SEC MO/DAY/YR WEEK

1 00 :00 :01 JAN 1, 1968 M
2 00 :00 :02 JAN 1, 1968 M
3 00:00:04 JAN 1, 1968 M
4 00:00:08 JAN 1, 1968 M
5 00:00:16 JAN 1, 1968 M
6 00:00:32 JAN 1, 1968 M
7 00:01:04 JAN 1, 1968 M
8 00:02:08 JAN 1, 1968 M
9 00:04:16 JAN 1, 1968 M

10 00:08:32 JAN 1, 1968 M
11 0Q :17:04 JAN 1, 1968 M
12 00:34:08 JAN 1, 1968 M
13 01 :08:16 JAN 1, 1968 M
14 02:16:32 JAN 1, 1968 M
15 04:33:04 JAN 1, 1968 M
16 09 :06 :08 JAN 1, 1968 M
17 18:12 :16 JAN 1, 1968 M
18 ld 12:24:32 JAN 2, 1968 T
19 3 d 00 :49:04 JAN4, 1968 TH
20 6d 01:38:08 JAN 7, 1968 SN
21 12 d 03 :16:16 JAN 13, 1968 s
22 24 d 06:32:32 JAN 25, 1968 TH
23 48 d 13:05:04 FEB 18, 1968 SN
24 97 d 02 :10:08 APR 7, 1968 SN
25 194 d 04:20:16 JUL 13, 1968 s
26 388 d 08 :40:32 JAN 23, 1969 TH
27 776 d 17 :21:04 FEB 15, 1970 SN
28 1553 d 10 :42:08 APR 2, 1972 SN
29 3106 d 21 :24:16 JUL 3, 1976 s
30 6213 d 18:48:32 JAN4, 1985 F
31 12427 d 13 :37:04 JAN 9, 2002 w
32 24855 d 03 :14 :08 JAN 19, 2036 s
33 49710 d 06 :28 :16 FEB 5, 2104 T
34 99420 d 12 :56 :32 MAR 11 , 2240 w
35 198841 d 01 :53:04 MAY 21, 2512 s
36 397682 d 03 :46:08 OCT 9, 3056 TH
37 795364 d 07:32:16 JUL 18, 4145 SN

38 1590728 d 15:04:32 JAN 31, 6323 T
39 3181457 d 06:09:04 MAR 3, 10678 F
40 6362914 d 12:18:08 MAY 2, 19388 SN

(RESET) 12725828 d 00:36:16 AUG 31, 36808 TH

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

136

. 10. 12 THE TIME MACHINE (Continued)

Note that the "action" begins after the eighteenth light. The counter will reset on
Thursday, August 31, 36808 at 12:36:16 A. M. 11 The calculations of the dates in the table
become complicated after 2000 A. D. , and we must consider "leap year" corrections in
order to pinpoint the correct date and day of the week. Just thinking about these dates
shows us how small a speck we are in the sands of time I ! !

Now let us take a closer look at what a YEAR really is. The astronomical books
define a year as 365d 05h 48m 46s (365 days, 5 hours, 48 minutes, and 46 seconds). If we
were to have only 365 days in every year, the total days for 4 years would be 1460 days.
However, if we consider the extra 5h 48m 46s, four years will produce a loss of 23h 15m 4s
(almost 24h). If we add an extra day to every fourth year (to that year which is divisible by
4), we will compensate for the lost 23h 15m 4s, but we will also have an extra 44m 56s too
much. Therefore, every four years will contain 1461 days but will gain 44m 56s on what
the true calendar year should be. Let us consider an interval of 400 years. This will
contain 100 4-year totals of 1461 days. However, the 44m 56s, when multiplied by 100,
amounts to 74h 53m 20s (slightly more than 3 days or 72 hours). Therefore, we must sub­
tract 3 days every 400 years and can easily do this by deleting 3 leap years from centuries
not divisible by 400 and by retaining the leap year for centuries that are divisible by 400,
(Note that in our era, 1700, 1800, and 1900 were not leap years, but the year 2000 will be
a leap year.)

The above discussion defines the present Gregorian calendar with a first-order
correction (leap year every fourth year) and second-order correction (leap century every
fourth century). The old Julian calendar did not use the second-order "century" correction
and has included too many leap years in the century years. Now, we must look still
further into the present Gregorian calendar if we are to calculate dates such as 36,808 A. D.
in the previous table, We must now determine a third-order correction, In doing this, we
will assume that the 365d 5h 48m 46s year length remains unchanged. In reality, scientists
estimate that the day length will gain about one second each century due to slowdown of the
earth's rotation and that the earth's orbital slowdown will cause further effects; but we will
not include these estimates in our calculations. Now let us again consider an interval of
400 years and call it a "QUAD" century. After the Gregorian calendar corrections for
every "QUAD", there is still an excess of 2h 53m 20s from the true calendar date. An
interval of 216 "QUADS" will yield 624h OOm OOs too many, which -must be deleted. Now,
624 hours equal 26 days exactly. We must now delete 26 days every 216 "QUADS". To do
this, we will delete leap years every eighth "QUAD" starting with 5200 A. D. for a third­
order correction. However, 216 + 8 equals 27 days deleted in 216 "QUADS", or one day
too many deleted. This can be compensated by not deleting a leap year every twenty-seventh
interval starting with 88,400 A. D. This completes all the corrections necessary for this
scheme and the cycle may be repeated over and over again as far as we might go--even to
1,000,000 A. D. ! I I

Briefly summarized, our calendar scheme is as follows:

Every 4 years: LEAP YEAR (years divisible by 4)

Every 4th century: LEAP YEAR ("QUAD" century years divisible by 400)

Every 8th "QUAD" century interval (starting with 5200): LEAP YEAR only
every 27th interval

The days of the week may be calculated by referring to the perpetual calendar in any
almanac which shows the dates, years, and days of the week for a 400-year interval. Then
we have all the information necessary when we note that if we add or subtract 400 years to
each year shown, the months and days of the week will be identical. For instance, a
calendar for 1968 would be the same as the calendar for 2368, 2768, and 3168. However,
if we pass any "interval" "QUAD" century years such as 5200, 8400, etc., we must subtract

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

137

10. 12 THE TIME MACHINE (Continued)

one weekday for each "interval" . For instance, January 1, 1968 was on Monday . Such
would be the case for January 1, 2368 or January 1, 2768 or January 1, 3168. The years
3568, 3968, 4368, 4768 and 5168 would also have January 1 on Monday. However 1 5568
would have January 1 on Sunday because 5200 is not a leap year. Likewise, January 1,
9768 will be on Saturday because 5200 and 8400 are not leap years. The table following
shows the "QUAD" century leap years from 2000 A. D. to 101,600 A. D. The dates for the
"ON" times of the last bits of the 40-bit binary "up" counter were determined from this
table.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

138

10.12 THE TIME MACHINE (Continued)

"QUAD" CENTURY YEARS
("L" = Leap Year; 11

••11 = Normal Year; "4#1" = 27th
Interval Leap Year) (1 year = 365d 05h 48m 46s)

2000 L 22000 L 42000 L 62000 L 82000 **25
2400 L 22400 L 42400 L 62400 L 82400 L
2800 L 22800 L 42800 L 62800 **19 82800 L
3200 L 23200 L 43200 L 63200 L 83200 L
3600 L 23600 L 43600 **13 63600 L 83600 L
4000 L 24000 L 44000 L 64000 L 84000 L
4400 L 24400 **7 44400 L 64400 L 84400 L
4800 L 24800 L 44800 L 64800 L 84800 L
5200 ••1 25200 L 45200 L 65200 L 85200 **26
5600 L 25600 L 45600 L 65600 L 85600 L
6000 L 26000 L 46000 L 66000 ••20 86000 L
6400 L 26400 L 46400 L 66400 L 86400 L
6800 L 26800 L 46800 **14 66800 L 86800 L
7200 L 27200 L 47200 L 67200 L 87200 L
7600 L 21600 ••8 47600 L 67600 L 87600 L
8000 L 28000 L 48000 L 68000 L 88000 L
8400 ••2 28400 L 48400 L 68400 L 88400 LH
8800 L 28800 L 48800 L 68800 L 88800 L
9200 L 29200 L 49200 L 69200 ••21 89200 L
9600 L 29600 L 49600 L 69600 L 89600 L

10000 L 30000 L 50000 ••15 70000 L 90000 L
10400 L 30400 L 50400 L 70400 L 90400 L
10800 L 30800 ••9 50800 L 70800 L 90800 L
11200 L 31200 L 51200 L 71200 L 91200 L
11600 **3 31600 L 51600 L 71600 L 91600 ••1
12000 L 32000 L 52000 L 72000 L 92000 L
12400 L 32400 L 52400 L 72400 **22 92400 L
12800 L 32800 L 52800 L 72800 L 92800 L
13200 L 33200 L 53200 **16 73200 L 93200 L
13600 L 33600 L 53600 L 73600 L 93600 L
14000 L 34000 ••10 54000 L 74000 L 94000 L
14400 L 34400 L 54400 L 74400 L 94400 L
14800 **4 34800 L 54800 L 74800 L 94800 **2
15200 L 35200 L 55200 L 75200 L 95200 L
15600 L 35600 L 55600 L 75600 **23 95600 L
16000 L 36000 L 56000 L 76000 L 96000 L
16400 L 36400 L 56400 **17 76400 L 96400 L
16800 L 36800 L 56800 L 76800 L 96800 L
17200 L 37200 **11 57200 L 77200 L 97200 L
17600 L 37600 L 57600 L 77600 L 97600 L
18000 ••5 38000 L 58000 L 78000 L 98000 ••3
18400 L 38400 L 58400 L 78400 L 98400 L
18800 L 38800 L 58800 L 78800 **24 98800 L
19200 L 39200 L 59200 L 79200 L 99200 L
19600 L 39600 L 59600 **18 79600 L 99600 L
20000 L 40000 L 60000 L 80000 L 100000 L
20400 L 40400 ••12 60400 L 80400 L 100400 L
20800 L 40800 L 60800 L 80800 L 100800 L
21200 **6 41200 L 61200 L 81200 L 101200 **4
21600 L 41600 L 61600 L 81600 L 101600 L

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

139

10.12. 1 THE TIME MACHINE CLOCK

Let us now return to our humble mid-1900's and determine how to build a gated logic
time clock. In fact we can build a very accurate time clock that will automatically give the
time, exact day of the month, month, and year. The clock can also sense leap years, leap
centuries, and leap twenty-seventh 8-"QUAD" intervals if necessary. The discussion here
is confined to a clock that will determine leap years and leap centuries. In order to do
th.is, we will break down the clock as follows:

1. "SECOND" COUNTER

2. "MINUTE" COUNTER

3. "HOUR" COUNTER

4. "DAY-OF-THE-MONTH'' COUNTER

5, "MONTH'' SHIFT REGISTER

6. "DAY-MONTH-YEAR" LOGIC INTERFACE

7. "YEAR" BCD DECADE COUNTER

8. "LEAP-YEAR, LEAP-CENTURY, CENTURY" LOGIC

INTERFACE

Before we can operate a clock properly, we need a good timing pulse of one pulse per
second. The pulse accuracy is very important and will not properly operate the clock if
variations can occur. For instance, an accuracy of 1% may be thought to be good, but a
pulse of 1 second ±1% may gain or lose as much as 15 minutes a day! 11 An accuracy of 1
second ±. 1 % will gain or lose about 1. 5 minutes a day, or about 45 minutes a month I I I A
pulse of 1 second .±. 01 % may gain or lose 4. 5 minutes a month which represents the
accuracy of a cheap wristwatch. A pulse of 1 second .±. 001 % may gain or lose . 45 minutes
a month or about 5. 4 minutes a year. A pulse of 1 second±. 0001% may gain or lose. 54
minute, or about 33 seconds per year, which represents a high-priced precision wrist­
watch. A wall clock timed from the A. C. line has an accuracy better than.±. 000001%. The
most accurate timing device to date is the atomic clock and has an accuracy on the order of
one part in ten billion (±. 0000000001 seconds or ±. 00000001 %) . It should be very apparent
that an ordinary timing pulse generator circuit is not accurate enough to drive a clock I
However, a very accurate timing pulse from the A. C. line (~ee following diagram) is more
than sufficient for this project. The 60-cycle A. C. must be converted to a square wave by
use of a flip-flop and then be divided by 60 (i.e. , be divided by 10 and then by 6) to provide
the 1-second pulse needed for this clock. A ''second" or "minute" counter described in this
section may be used to convert the 60-cycle sine wave to the required 1 cycle per second
square wave.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

140

10. 12. 1 THE TIME MACHINE CLOCK (Continued)

TIMI G FROM THE A. C. LINE

-115 VAC
60 Hz
A.C.
LINE + 6VDC

6.3V
STEP-DOW

TRA SFORMER
(any kind) FF-1

TIMING PULSE TO
TRIGGER OTHER CIRCUITS

FILTER CAPACITOR
(OPTIO AL)

* VALUES OF 5000 TO 10000 MAY BE USED.
** VALUES OF 50 µ.1 to 300 µ.f MAY BE USED.

ADJUST ABOVE VALUES IF ILTERING IS UNSATISFACTORY
WITH VALUES SHOWN IN MAIN CIRCUIT.

-

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

141

10. 12. 1 THE TIME MACHINE CLOCK (Continued)

Let us now proceed to build the clock. The timing pulse is fed directly into the first
counter or the "second" counter. The "second" counter is a 2-stage BCD counter which is

gated lo count lo 59 In BCD(~ D and then reset itself, throwing out a "carry" lo the

"minute" counter which is built exactly the same way. The following logic diagram shows
the construction for the "minute" and 11 second'' counter.

''MINUTE" AND "SECOND" COUNTERS LOGIC DIAGRAM

CARRY
INPUT TO
"MINUTE"
COUNTER

-OR­
''HOUR''

COUNTER

r.1

"SECOND"
TIMING PULSE

-OR­
"SECO D"

CARRY
INPUT

The "carry" from the "minute" counter is then fed into the input to the "hour" counter .
Logic diagrams are shown for two possibilities for an "hour" counter, either one of which
may be used. The first is an A.M. -P. M. 12-hour BCD counter which is gated to count to
11 and reset and will read out as A. M. (Ante Meridiem or MORNING) or as P. M. (Post
Meridiem or EVENING) hours. The "A. M." flip-flop readout must be set to the opposite
of the "P. M. '' flip-flop readout. The "carry" is generated from the "P. M." flip-flop. The
24-hour BCD counter is gated to cowit to 23 and then reset. It will count directly from
"zero" hour (midnight) to 23 hours (11:00 P. M.) and then reset. The "carry" is generated
by the last stage. The logic diagrams are as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

142

10. 12. 1 THE TIME MACHINE CLOCK (Continued)

4

•••

CARRY
INPUT TO ---+-...

II DAY" cou TER

20

••

•••

"MINUTE"
CARRY
INPUT

• ••

••
10

•••
24-HOUR COU TER LOGIC DIAGRAM

"P.M."

...
"A.M." __ ,._

READOUT

Set "PM" = "AM"
Midnight = "AM"
Noon = "PM"

CARRY
--------INPUT TO

"DAY" COU TER

"MINUTE"
CARRY
INPUT

12-HOUR A. M. -P. M. COUNTER LOGIC DIAGRAM

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

143
10. 12. 1 THE TIME MACHINE CLOCK {Continued)

Now we come to the most complicated of all the counters, the 28-29-30-31 day-of-the-­
month BCD counter. This counter will sense "month" and "leap year" inputs and count to
the proper number of days, depending on the month and whether or not we have a leap year.
The 11hour11 "carry" is used to drive the day-of-the-month counter and is fed into the first
stage. The "day-of-the-month" or "day" "carry" is generated at the last stage and is used
to change the month when triggered . The open inputs to some gates labeled "28", "2911 ,

"30", "29", etc . , are those "senses" which are generated by day-month-year logic inter­
face . Those 11senses" are wired directly into this counter and cause the decision as to how
many days to which to count before resetting and changing the month. The logic diagram is
as follows:

28-29-30-31 DAY-OF-THE-MONTH COUNTER WGIC DIAGRAM

CARRY
INPUT TO
12-MONTH

SHIFT REGISTER

~ ..

CARRY

"HOUR"
CARRY
INPUT

RESET PULSE

30

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

144

10. 12. 1 THE TIME MACH1NE CLOCK (Continued)

The 12-month shift register is very straightforward and needs no further explanation.
It is triggered by the day-of-the-month "carry" and generates a "carry11 from 11DEC11 to the
''year11 counter. The logic diagram is as follows:

CARRY! PUT
TO "YEAR"
COU TER

12-MONTH SHIFT REGISTER LOGIC DIAGRAM

"DAY"
CARRY
INPUT

The "day-month-year'' logic interface is used to generate the decision-making informa­
tion for the day-of-the-month counter. The 28, 28, 29, 29, 30, 30, 31, 31 outputs are
shown and are wired directly into the positions shown in the "day-of-the-month" counter~
The "month" interface inputs are also labeled with the name of the appropriate month. The
LY, LC, C, and C inputs will be discussed later. The logic diagram is as follows:

* OTE: Outputs~ and JO not used in "day-of-the-month" counter .

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

145

10. 12. 1 THE TIME MACHINE CLOCK (Continued)

INPUTS

JUL-------­
A UG

OCT
DEC

INPUTS

DAY-MO TH-YEAR INTERFACE LOGIC DIAGRAM

The "year11 BCD decade counter consists of repeated stages of BCD counters where
one counter 11carries11 into the next one .

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

146

10. 12. 1 THE TIME MAClilNE CLOCK (Continued)

DEC

r.1

DECADES

r.1 r.1

r.1
CE TURIES

r..
MILLENIUMS

YEAR BCD DECADE COUNTER LOGIC DIAGRAM

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

147

10. 12. 1 THE TIME MACHINE CLOCK (Continued)

Now we come to the final logic interface-the "leap year (LY), leap century (LC), and
century year (C) 11 logic interface. The inputs to this logic are shown with the numbers
assigned the flip-flops in the BCD "year" decade counter. Note that we also need a "non­
century" output (C). Essentially, we must test divisibility by 4, 100, and 400. A year is
divisible by 4 if the first flip-flop in the "decade year" stage is "1" and the second "year"
flip-flop is "on" ,and the first "year" flip-flop is "l" , JU: if the first "decade year"

flip-flop is "off" ,WliJ the first two "year" flip-flops are "off11• Logically, this is shown by
(W· 2· T)v(lO· 2 · 1). We have a century year if all flip-flops in the "year" e-nd "decade year"
are "off". Logically, this is shown by (80· 40· 20· Io. 8· 4-2• l). We have a "QUAD" century
year (divisible by 400) if the first flip-flop in "millenium" is 11111 ~ the second "century"
flip-flop is "on" and the first "century" flip-flop is "1": .2!,if the first
"millenium" flip-flop is "off" and the first two "century'' flip-flops are "off";and all "year"
and "decade year" flip-flops must also be "off". Logically, this is shown by:

[(i°ocio• 200· l()())v(lOOO· 200· Tim>] · (80· 40· 20· 10· 8· 4· 2· 1)
The logic diagrams for the interface are as follows:

c10- 2-I>vc10. 2-T>

(80· 40· 20• 1()• 8·4· 2·1)

[(1000· 200· lOO)v(lOOO· 200· 100)] • (80· 40· 20· 10· 8· 4• 2·1)

DIVISIBLE BY 4

DIVISIBLE BY 100

DIVISIBLE BY 400

io
2
1

10
2

1

80
40
20
io
8 - CENTURY SENSE
4
2
1

1000
200

100

1000
200

Too

LEAP CENTURY SENSE

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

148

10.12.1 THE TIME MACHINE CLOCK (Continued)

Now that we have figured out how to build the specific parts of the clock, we will again
illustrate in a graphic summary how they are put together.

"DAY-OF-THE- "HOUR" 11MINUTE11 "SECOND" "ONE-SECOND"
MONTH'' ~ +- +- TIMING
COUNTER ~ COUNTER COUNTER COUNTER PULSE

"DA Y-MONTH-YEAR11 -LOGIC INTERFACE -....

4 •

"LEAP-YEAR, LEAP-CENTURY,
CENTURY" --

LOGIC INTERFACE

"YEAR" "12-MONTH" __.
-....

COUNTER SHIFT REGISTER

i
We could also combine the clock and the 40-bit "up11 counter, trigger them simultaneously,

set the clock to the proper date, and the clock will then automatically read out the date for
the binary display . If this is done, the following binary conversions for years, hours, and
minutes into seconds will be very helpful.

CONVERSION TO CONVERSION TO
UNIT SECONDS (DECIMAL) SECONDS (BINARY)

MINUTE 60 111100

HOUR 3,600 111000010000

DAY 86,400 10101000110000000

WEEK 604,800 10010011101010000000

YEAR 31,536,000 1111000010011001110000000

LEAP YEAR 31,622,400 1111000101000010100000000

4-YEAR CYCLE 126,230,400 111100001100001111110000000

(1461 DAYS}

A suggested light configuration for a combined clock and 40-bit 11up" counter is shown
on the following page.

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

149

10. 12. 1 THE TIME MACHINE CLOCK (Continued)

"WE ARE BUT A St.lALL GRAIN IN THE S"NDS OF TIME" - - - LIBE

.40 . 39 . 38 e ;H . 36 . 3!', . 34 . 33
MAY 2, 1938B MAR 3. l067B JAN 31, 6323 JUL 18. 414!1 OCT 9. 30~ MAY 21, 2!112 M"R II, 2240 FEB:!, 2104

12:18:08 06:09:04 1!1·04:32 07 . 32 :16 03 :46 .08 Ol:~3:04 12. !',6 :32 oe ,2e :16
SUNDAY FRIDAY TUESDAY SUNO"Y THURSDAY SATURDAY WEDNESDAY TUEB·D"Y

RESET

AUG 31. 36809

00 ·35 :16

THURSDAY

. 32 . 31 . 30 . 29 . 28 e 21 . 26 . 2!1
JAN 19, 2036 J"N 9, 2002 JAN 4 , l98~ JUL 3 , 1976 APR 2. 1972 FEB l!I, 1970 JA.N 23. 1969 JUL 13. 1968

03 14 08 13 37.04 1848:32 21 : 24.16 10:42 08 17 :21 04 08 40 32 04 20 16
SATURDAY WEDNESDAY FRIDAY SATUROO SUNDAY SUNO"'I' THURSDAY SATURDAY

. 24 e 23 e 22 . 21 e 20 e 19 e ia e n
"PR 7, 1968 FEB 18. 1968 JAN 2:1. 1868 J"N 13. 1968 JAN 7, 1968 JAN 4, 1968 JAN 2. 1968 JAN I , 1968

02 10 08 13 O!'J ·o4 06 32 32 03 16 16 01 38 ·09 00 49 04 12 24 32 18 12 16

SUNDAY SUND"Y THURSDAY SATURDAY SUNDAY THURSDAY TUESDAY MONDAY

e 16 e l!I e 14 e 13 e 12 e 11 e 10 e s
JAN I, 198B J"N 1. 1968 JAN 1, 1968 JAN I. 1968 JAN I, 1968 JAN I. 1968 J"N I , 1968 JAN I . 1968

09 06 08 04 :33 :04 02 18 32 01 08 16 00 :34 08 00 17 04 oo oa ,32 00 :04 16

MONOAY t.lONOAY MONDAY MONDAY t.lONDAY MONDAY t.lONOAY t.lONOAY

ea e1 e s e ~ e• e3 e 2 e1
JAN I. 1968 JAN I. 1968 JAN I , 1988 JAN I, 1968 JAN I. 196B JAN I. 1968 JAN I. 1968 JAN I. 1968

00 02 08 00 01 04 00 00 32 00 00 16 00 00 08 00 00 04 00 00 02 00 00 01

MON DAY MONDAY MO-Y MONOAY MONDAY MONDAY MONO,t,.Y MONDAY

THE TIME MACHINE
~~::e ea ea ea e a ea e a e e

... , R
ea e ea e a ea

DEC AUG ::::::::::::P.M.

LEAP . e4 ... e4 e4 e4 e 4 • e e .4 e ... e4 e 4 .4 . 4
CENTURY NOV JUL MAR A.M .

• e ~ e 2 e z e 2 e 2 e2 e2 e 2 e e 2 e 2 e 2 e 2 e 2 e 2
OCT JUN FEB ., e1 e1 e1 e1 e1 • e • ., e1 e 1 e 1 e 1 e 1 e 1 e 1

1 1100.000 10.000 ,ro oo 100 10 I
SEP MAY J,t,.N

DAY OF MONTH HOURS MINUTES SECONDS

YEARS A.O. MONTH TIME CONTROL PANEL
THIS EKHIBIT WMJ OONATED BY LIBE COMPANY TO Sf«JW THE 8"SIC USE OF BINARY El.ECTRONIC COMPUTER CIRCUITS FOR KEEPING TIME. ,t,.NQ TO
FAMUAAIZE PEOPLE WITH THE BINARY NUMBER SYSTEM . THE CLOCK WAS ST ... RTEO AT oo·oo,oo M. 1/1 /68 THE 40-BIT ["8Il",BINARY DIGIT]
"UP" COUNTER ABOVE [BIT LIGHTS NUMBERED '. SHOWS THE DATE ANO TIME EACH LIGHT WI LL FIRST COWE ON . THE FIRST LIGHT IS TRIGGERED
ONC£ EACH SECOND E,t,.CH SUCCESSIVE LICHT T,t,.KES TWICE THE Ti t.IE OF THE PRECEDING LIGHT TO COMPLETE A CYCLE AND WILL TURN ON
ONLY WHEN THE PRECEDING LIGHT GOES OFF NOTE THAT THE LAST LIGHTS TAKE ,t,. LONG LONG TIME TO COME ON I THE LIGHT PATTERN Will
NOT REPEAT ITSELF FOR NEARLY 3!1.000 YEARS .1 ONE CAN COME BACK ,t,.GAIN AND AG,t,.IN TO OBSERVE THE CH,t,.NGING LIGHT PATTERN
THROUGHOUT THE YEARS .1 - - THE TIME CONTROL PANEL CLOCK BH<MS THE CORRESPONOING YEAR, MON™. DAY, HOUR, MINUTE, ANO SECOND
IN GREENWICH MEAN TIME (GMT OR "Z" TIME) IN ORDER TO TRANSL,t,.TE THE BINARY TIME CONTROL LIGHTS BACK TO OUR OWN NUMBER
SYSTEM, NOTE THE NUMBERS BESIDE E~H LIGHT. FOR E,t,.CH LIGHT COLUMN. ADD UP ,t,.LL NUMBEl!S WHOSE CORRESPONDING LIGHTS ARE ON
A COLUMN WI™ ALL LIGHTS OFF REPRESENTS A "O" BE SURE TO DROP BY ,t,.ND OBSERVE THE ZERO · HOUR O,t,.TE CH,t,.NCES

• I I

I I .. I

Area science museum.

face of an exhibit
a San Francisco Bay

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

150

10. 12. 1 THE TIME MACHINE CLOCK (Continued)

In leaving this discussion on time, we leave one of the most fascinating subjects of
nature. The material in this chapter represents only a brief introduction. We leave it to
the imagination of the reader to explore the full depth of the time machine.

10, 13 ELECTRONIC DICE

In order to set up electronic dice, we first note the die faces:

1 2 3 4 5 6

Now, if we superimpose the dots of the above die faces, we form a single "face" of
seven dots as follows:

e-:1
We can pick out any combination of dots from single face above to represent a die "face"
display representing 1, 2, 3, 4, 5, or 6. In order to set the dots up as a counter, we will
use the center dot for the 111 11 dot, the upper-right-lower-left diagonal pair for the 112 11 dots,
the upper-left-lower-right diagonal for the "2A" dots, and the center side pair for the "2B"
dots. They are represented as follows:

"l" ll2AII "2B"

Using the above 4 representations, we can see that the die displays occur as follows:

1 = "1"

2 = 11 21'

3 = "2" and 11111

4 = "2" and "2A"

5 = 11211 and "2A" and 11 111

6 = "2" and "2A" and "2B"

We now set up a truth table as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

151

10. 13 ELECTRONIC DICE (Continued)

DIE 112BII 112AII 11211 11111

DISPLAY FACE FACE FACE FACE

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 1 0

5 0 1 1 1

6 1 1 1 0

From the above truth table, we can s_ee that we need a gated 4-bit binary counter to count
in the following sequence: 0001, 0010, 0011, 0110, 0111, 1110, 0001. There is no
reset and the counting sequence must occur over and over again as shown. We can use a
pulse and a 11halt11 command to start and stop the counting sequence at random. The logic
diagram for a gated 11die11 counter is as follows:

Now we must alter the above counter, change the physical positions of the flip-flops, and
then add three more flip-flops to produce the 11 211 , 112A", and 112B" dot pairs. We will also
add a "halt11 command for pulse control. The altered logic diagram is as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

152

10. 13 ELECTRONIC DICE (Continued)

rtl
·~~ -
"2A" t :

r:l -•-

.. :;!.~
-
~ t. -

.;;.

-0 - ---~
- "2" . ;-

w "'

~ -~ - "1" :

,r;.

I':'::\.

~'Cl --4 ~ HALT I~

t

w • ----ff "HALT COMMAND"
START

1!!
~ >
l;.

~-.. ,
~ .~ >
.;.

",•t-
~ >
w

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

153

10. 13 ELECTRO IC DICE (Continued)

The counter will now read out directly like a die face when the pulse is stopped. Thus
we can turn on the die counter by shorting together the two points indicated by arrows on
the bottom of the "HALT1' flip-flop, and stop the counter by shorting together the two
points indicated by arrows at the~ of the 11HALT" flip-flop .

Now, if we were to build up two ''die" counters, we could set up an automatic gating
command using 3 pulse generators . Pulse fH would control die #1 and pulse # 2 would
control die # 2. Both pulse ·#1 and # 2 should be fast pulses of greater than 100 pulses per
second. Pulse #3 would control the "HALT" flip-flop and should be as slow as possible
(less than one pulse per second, preferably 1 pulse every 5 or 6 seconds) so the die face
displays can be perceived during the time the pulse has stopped. Then the counter will
automatically start up again and once more stop at random die face displays. For two 11die"
counters , the pulse should be set up as follows:

PULSE I PUT
TO "DIE" COU TER

2

PULSE
2

(FAS1j

• r..
PULSE

#3
(SLOW)

•

PULSE INPUT
TO "DIE" COUNTER

1

•

PULSE
1

(FAS1j

The two completed "die" counters now form a pair of electronic dice which will auto­
matically "gate" count and stop at random displays. Happy gambling!

10. 14 THE BINARY-TO-DECIMAL DECODER

The binary-to-decimal decoder will decode a 4-bit binary number from a BCD (binary
coded decimal counter) and display any of 10 decimal positions from O to 9. The decoding
can be done with "AND" gates as follows:

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

154

10. 14 THE BINARY-TO-DECIMAL DECODER (Continued)

DECIMAL READOUT ---••• ••••••••••••••••••

DECODING LOGIC

••• • ••

After decoding, the decimal numbers are then read out in a row of 10 flip-flops.

•••

Decoding of other counters can also be accomplished in the same manner by use of "AND"
gates.

11. UNLIMITED HORIZONS

Now that the workings of the computer have been explained, the imagination is now
ready to talce over. One can now design with microelectronic integrated circuits using
these same principles. The direction one can go from here is unlimited. Perhaps a large
computer? Perhaps a special computer that will do something no other computers will do!
The scope and horizons are unlimit d I 11

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12. GLOSSARY

ACCUMULATOR - the register (row of flip­
flops) that displays an answer such as in the
case of the "adder" and "subtracter'' wiring
projects.

ADD CONTROL - the ''halt" command which
is used to control (or stop} the addition pro­
cess in an "adder" configuration.

ADDE D - the number which will be added to
another number {in the process of addition).

ADDEND REGISTER - the register (row of
flip-flops) in which the number to be added is
entered (in the "adder" computer project).

ADDER - a wired configuration of flip-flops
and/or logic gates which will perform the
arithmetic process of addition.

ADDER, FULL - the complete logic circuitry
which generates both a ''sum" and a ''carry"
output.

ADDER, HALF - the logic circuitry which
generates only a "sum" output and not a "carry"
output; (also called a "SUM" gate).

ADDER, LOGIC - a wired configuration of
logic gates and/or flip-flops which will per­
form addition (in binary).

ADDER, NON-GATED BINARY - a wired
configuration of only flip-flops that will per­
form addition (i. e. , that will allow a binary
number to be added in one register and the
answer to be displayed in a second register).

ADDER, SHIFT - a wired configuration of
flip-flops and logic gates that consists of one
full adder and three shift registers. Two
shift registers shift the two numbers to be
added through the full adder and the answer is
shifted out in the third shift register.

ADDITION IDENTITY - a logic expression
which defines a "sum", a "carry", or both for
two or more binary numbers.

155

"AND" GATE - an electronic circuit
which forms a logic gate (represented by
a semicircle) whose output is a 1111' only
when all of its inputs are 11111 • The gate
output is 11011 for all other combinations of
inputs.

"AND" LOGIC OPERATION - the logic
operation denoted by the "dot" (·) ; the
operation which answers the question:
"Are all the facts 'TRUE'?" or "Are all
inputs '1' ?11

ANODE - the lead on a diode which re­
ceives positive (+) voltage, as opposed to
the other lead, the cathode, which re­
ceiv es negative voltage.

ANTE MERIDIEM - before noon (abbre­
viated A. M.); denotes a time period of
half a day starting from zero hour (mid­
night) up to, but not including, noon hour
(i . e. , the time period during the morning
hours) .

ASSOCIATIVE - refers to the grouping of
logic facts or expressions (i.e. , the use
of "grouping" parentheses, brackets, or
braces .

ASTABLE MULTIVIBRATOR - a pulse
generator.

AUGEND - the number to which another
number will be added.

BAR, OVERHEAD - (-) used to group
together specific parts of "FA~E" logic
expressions; used to denote a "FA~E"
logic (i. e . , to negate) logic fact.

BASE - the lead on a transistor which is
used to control the flow of voltage and cur­
rent through the transistor (see also
COLLECTOR and EMITTER).

BCD - the abbreviation for "binary coded
decimal".

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

156

12. GLOSSARY (Continued)

BINARY ADDITION - obtaining the binary
sum of two binary numbers.

BINARY CODED DECIMAL - any decimal
number (or decimal readout) that is con­
trolled by a logic-gated binary counter
which will count from 1 through 9 and then
reset itself.

BINARY CODED DECIMAL (BCD) COUNTER­
a binary counter with logic gating which
will count up to binary nine (1001) and then
reset itself to 0000; the counter used to
control decimal system digital displays.

BINARY COMPLEMENT - that binary mun­
ber which has the "l' s" and "O's" of its
digits interchanged from those of the original
binary number. The sum of a binary number
and its complement is a third binary number
whose digits are all "l's".

BINARY DIVISION - the process of dividing a
first binary number by a second binary num­
ber and obtaining a binary quotient.

BINARY FRACTIONAL - all binary digits to
the right of the binary point. Similar to the
common "decimal" digits to the right of the
decimal point, except that the digits are all
in binary.

BINARY INPUT - a binary "1" or 11011 which
is fed to a logic gate input or flip-flop input
in order to perform a logic function or flip­
flop triggering operation; any pin on a flip­
flop or logic gate which can receive a binary
output signal.

BINARY MULTIPLICATION - the process of
multiplying two binary numbers together and
obtaining a binary product.

BINARY NUMBER - a digit which represents
a power of 2 and can only be a 11111 or a 11011

; a
number of two or more digits which represent
powers of 2 and each digit is a 11111 or a "0".

BINARY OUTPUT - any pin of a flip-flop or
logic gate that generates a binary 11111 or 11011

voltage s ignal which results from one or more
input signals. Any pin on a pulse generator
which generates a pulse voltage signal.

BINARY POINT (·) - similar to a "decimal"
point, except that it is used to denote a
binary fractional.

BINARY SUBTRACTION - the process of
subtracting two binary numbers to obtain a
binary difference.

BINARY SYSTEM - the number system to
the base 2. Consists only of "l's" and "O's''.
Starting to the right, we have the "1 's"
column, then the 2's column just left of it,
then the 4's column, the S' s column (each
column to the left represents a number
double the value of that to the right of it).
Binary 1111

' means the column number is
used; binary "0" means the column number
is not used.

BISTABLE MULTIVIBRATOR - a flip-flop.

BIT - this is the shortened form for the
words BINARY DIGIT. A "bit" is a binary
digit.

BOOLEAN APPROACH - to impose the con­
dition that a ll logic statements, reasons,
conclusions, facts, etc. , are either "TRUE"
or "FALSE11 •

BORROW - the binary 1111' which is removed
from the adjacent column to the left by the
subtraction of binary 11111 from binary 1'0",
leaving 11111 in the column which was subtract­
ed.

BORROW FEEDBACK - a "borrow", or
binary 11111 which is removed from a column
other than the adjacent column to the left;
the "borrow" of the last binary number at
the extreme left of a register which is fed
back into the first binary number (extreme
r ight) of the same register.

BRACES { } - symbols which denote logic
grouping along with parentheses and brackets.

BRACKETS [] - symbols which denote
logic grouping along with parentheses and
braces.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12. GLOSSARY (Continued)

"BRING- DOWN" - those numbers which are
in the dividend (in division) or in the radicand
(under the square root radical) which are
tacked onto the remainder in order for a
further division process to be performed;
the process of tacking on the numbers men­
tioned above.

CANCEL - to remove a binary 11111 from a
flip-flop; to turn the flip-flop readout light
off by shorting or touching together pins A
and B. The process of removing a binary
number from a register.

CAPACITOR - a two-lead electronic device
which is used to store up electronic voltage
charge.

CARRY - the binary 11111 generated in the
next column to the left by the addition of two
binary 11 1 1 s", leaving 110 11 in the column
which was added.

CARRY FEEDBACK - a "carry", or binary
"1" which is generated in a column other
than the next column to the left; the "carry''
of the last binary number at the extreme left
of a register which is fed back into the first
binary number (extreme right) of the same
register.

CA THODE - the lead on a diode which re­
ceives negative (-) voltage, as opposed to the
other lead, the anode, which receives positive
voltage.

CENTURY - a time interval of 100 years .

CENTURY, QUAD - a time interval of 400
years.

CENTURY YEAR - a year which ends in "00"
(is divisible by 100) such as 1700, 1800, 1900,
2000, and 2100.

CLEAR - to remove a binary "1" from a flip­
flop; same as "cancel"; to remove a binary
number from a register.

COLLECTOR - the lead on a transistor which
receives voltage and current input (see also
BASE and EMITTER) .

157

COMMAND GENERATOR - a binary counter
which is used in conjunction with "AND"
gates in order to generate a repetitive series
of command pulses . An "n"-bit counter can
generate up to 2n repetitive command pulses .

COMPARATOR - will compare two numbers
"A" and "B" and will determine whether A is
greater than, greater than or equal to, equal
to, less than or equal to, less than, or un­
equal to B depending on the type ot comparator.

COMPARATOR, BINARY - will perform the
same function as a comparator, except that
the numbers being compared are in binary.
A logic configuration which will sense any
number of comparison inputs and provide a
single binary comparison output.

COMPARATOR, "EQUAL TO" - will com­
pare two binary numbers "A" and "B". If
A = B, then the comparator output will be a
111". The comparator output will be "0" in
all other cases .

COM PARA TOR, "GREATER THAN" - will
compare two binary numbers "A" and "B" .
If A is greater than B, then the comparator
output will be a "1''. The comparator output
will be 110 11 in all other cases .

COMPARATOR, "GREATER THAN OR
EQUAL TO" - will compare two binary
numbers "A" and "B". If A is greater than
or equal to B, then the ~comparator output
will be a "1 11 • The comparator output will
be 11 011 in all other cases.

COMPARATOR, ''LESS THAN" - will com­
pare two binary nwnbers "A" and "B". If
A is less than B, then the comparator output
will be a 11111 • The comparator output will
be "0" in all other cases.

COMPARATOR, "LESS THAN OR EQUAL
TO" - will compare two binary numbers "A"
and "B". If A is less than or equal to B,
then the comparator output will be a 11111 •

The comparator output will be "O" in all
other cases .

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

158

12. GLOSSARY (Continued)

COMPARATOR, 11 UNEQUAL T011 - will com­
pare two binary numbers 11A" and 11B11 • If A
is unequal to B, the comparator output will
be a "l '' · The comparator output will be "0"
in all other cases.

COMPARATOR REAOOUT - the output of
either a gate or a flip-flop (the compa.rator
output) in a comparator computer project
which indicates that a comparison is valid
if it is a "l" and invalid if it is a "0".

COMPARISON DIAGRAM - a pictorial dia­
gram square which is divided into separate
cells. Each cell represents a comparison
possibility for comparison. The total
number of cells represents the total number
of comparison possibilities. The number of
cells that will appear for comparing num­
bers of "n" digits is 22n.

COMPLEMENT I BINARY - that binary num­
ber which has the "l 's 11 and "O's'' of its
digits interchanged from those of the orig­
inal binary number. The sum of a binary
number and its complement is a third
binary number whose digits are all "l's".

COMPLEMENTARY TRANSFORMATION
REGISTER - a register (row of flip-flops)
which will transform, by a computer pro­
cess, any number (entered into the register}
into its complement and display the comple­
ment in the same register.

CONCLUSION - a specific logical decision
or evaluation reasoned out from a set of
logical facts.

CONNECTIONS, POWER - those connec­
tions on electronic computer units which
supply the operating voltage needed for each
unit to function.

COUNTER - a system of wired flip-flops
whose binary digits will continuously in­
crease by 11111 in numerical order, or de­
crease by "l" in reverse order with each
pulse command.

COUNTER, BINARY CODED DECIMAL
(BCD) - a binary counter with logic gat­
ing which will count up to binary "nine"
(1001} and then reset itself to 0000.
Consists of four binary digits; the counter
used to control decimal system digital
displays.

COUNTER, 11DOWN" - a counter that
starts from any specmed number and
decreases its value by 1 with each pulse
signal input. In other words, it "counts
backwards".

COUNTER, GATED "UP-DOWN" - a
single-register binary counter that can be
controlled by logic gating so as to count
11UP11 or "DOWN" at the proper command.

COUNTER, "UP-DOWN" - a binary
counter wired with extra logic gates so
that the free-running counter will count
alternately "UP" and then switch auto­
matically to "DOWN" after resetting
from the "UP" count. It will switch
automatically back to "UP" after the
"borrow" overflow is generated.

CROSS-PRODUCT - those individual pro­
ducts which are obtained by multi plying
the multiplicand by each separate digit in
the multiplier. The sum of these cross­
products yields the total multiplied
product.

CURRENT-LIMITED VOLTAGE - voltage
present when a resistor is placed in
series with the power source (the value of
1, 000 ohms should be used for most cur­
rent limiting described in this text).

DAY - a time interval of exactly 24 hours.

DEBUG - to eliminate problems that may
occur in the wiring or operation of com­
puter circuits.

DECADE - a time interval of ten years.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12. GLOSSARY (Continued)

DECIMAL SYSTEM - the most commonly
used number system throughout the world;
our ordinary numbering system which
employs the use of the digits 1, 2, 3 , 4, 5,
6, 7, 8, 9, and 0.

DECODER, BINARY-TO-DECIMAL - a
configuration of logic gating which will con­
vert any binary number to a decimal number.
Usually used with a binary coded decimal
counter.

DECOUPLE - to block out any electronic
noise or interference which is generated by
nearby circuits, the power source (power
supply), or by external noise sources.

DECOUPLING CAPACITORS - capacitors
which are connected directly across the
power pins of each electronic circuit (flip­
flop, gate, or pulse generator) in order to
block out electronic noise or interference.

DEMORGAN'S THEOREMS - the two basic
theorems which define the relationship be­
tween "AND" and "OR" logic operations.

DENOMINATOR - the bottom part of a
fraction.

DIAGRAMS, LOGIC - drawings which illus­
trate how flip-flops and logic gates must be
wired up to perform specific computer
functions; the use of symbols to represent
flip-flop, logic gate, and pulse generator
electronic circuits without drawing out the
full electrical schematic each time. Dots
on the symbols are used to represent pin
connections. Lines which connect these dots
from one symbol to another represent all
wire connections (power connections are not
shown).

DICE, ELECTRONIC - a gated logic circuit
which will produce random die displays on
an electronic die face. Two of these circuits
are used to comprise a pair of electronic
dice.

DIFFERENCE - the answer which results
from the subtraction of two numbers; the
binary digit which represents the subtraction
of one binary digit from another binary digit,
ignoring the ''borrowit.

159

DIGIT - a single number.

DIGIT, BINARY - a single binary number
(a 11111 or a 11011).

DIGIT I LEAST SIGNIFICANT - the digit
at the extreme right of any number.

DIGIT, MOST SIGNIFICANT - the digit at
the extreme left of any number.

DIGIT SENSE - the use of an "OR" logic
gate to determine whether or not a number
is present in a register.

DIGIT SENSE LOGIC - a gated logic cir­
cuit (usually a multi-input "OR" gate)
which will determine if any numbers (or
digits) are present in a register.

DIGITAL - the representation of a number
in discrete terms of "on" or "off''. The
flip-flop register is a digital representa­
tion of a binary number. This is contrast­
ed with the term ANALOG which is a
representation of a number in terms of
variable (not "on" or "off") voltage out­
puts.

DIODE - a two-lead electronic device
which is used to block the flow of elec­
tronic voltage and current in one
direction (see also ANODE and CATHODE~

DIODE WIRE - a wire with a diode spliced
in the middle. The main use for the
diode wire is to stop (ot halt) the pulse
from the pulse generator.

DIRECT OUTPUT DISPLAY - the use of
a flip-flop to read out the output of a logic
gate by wiring that output of the logic gate
directly into pin E of the flip-flop.

DIRECTOR - an output pulse or signal
which is capable of driving one or more
inputs (or input followers).

DISPLAY, DIRECT OUTPUT - the use of
a flip-flop to read out the output of a logic
gate by wiring that output of the logic gate
directly into pin E of the flip-flop.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

160

12, GLOSSARY (Continued)

DISTRIBUTE - to logically "multiply" a logic
expression; to perform an indicated logic
operation on a group of logic facts, one at a
time, when such facts are grouped by paren­
theses and the logic operator is outside the
parentheses. The parentheses are then
remov d after the "distribute'' operation is
performed.

DISTRIBUTIVE LAW - any definition that
sets a rule for logic distribution operations.

DIVIDE CONTROL - a wired configuration of
flip-flops with or without logic gates which
generates pulse signals to perform the
division process (in the "divider" computer
project).

DMDEND - the number to be divided (in the
arithmetical process of division).

DIVIDEND REGISTER - the register (row of
flip-flops) in which is entered the number to
be divided (in the 11divider11 computer project).

DIVIDER, LOGIC - a configuration of gated
logic circuits and registers which will divide
one number by another.

DIVISOR - the number by which a second
number is divided (in the arithmetical pro­
cess of division).

DIVISOR REGISTER - the register (row of
flip-flops) in which is entered the number by
which a second number is being divided (in
the "divider" computer project).

DOUBLING, BINARY - the process of adding
an extra 11 011 to the left of a given binary
number. Adding on a 11 011 to the left of any
binary number will always result in doubling
that number.

"DOWN" COUNTER - a counter that starts
from any specified number and decreases its
value by 1 with each pulse signal input. In
other words, it "counts backwards".

DOWN-SWING, VOLTAGE - the change of the
output of a pulse generator, flip-flop, or
logic gate from a specific voltage, to zero
volts; the voltage change which will cause
flip-flop triggering.

EMITTER - the lead on a transistor where
the controlled voltage and current flow out
(see also COLLECTOR and BASE).

END-AROUND - the transfer of a pulse
command from the last flip-flop (extreme
left) in a register to the first flip-flop
(extreme right) . The signal generated by
the last flip-flop, which would normally
control another flip-flop to the. left (beyond
the last one, if it were present), instead is
used to control the first flip-flop.

ENTER - to place a binary 11 111 in a flip-
flop (i. e. , turn the flip-flop light on) by
touching pins D and E together. To place
a binary number in a flip-flop register by
changing the proper flip-flops to 1111 s".

"EOR" GATE - an "exclusive or'' gate. An
electronic circuit which forms a logic gate
whose output is a 11111 if, and only if, ~ of
its binary inputs is a 11111 • The gate output
is 11011 for all other combinations of inputs.

"EOR" LOGIC OPERATION - exclusive "or"
logic operation. The logic operation de­
noted by the "triangle" (Y); the operation
which answers the question: "Is there only
one 'TRUE' fact?" or "Is only one input a
'1 r ?"

EQUALITY, LOGIC - defines two or more
logic expressions, equations, or facts to be
equivalent or identical. This condition is
denoted by the "equal'' sign (=).

EXCLUSIVE OR - (see "EOR".)

FACT, LOGIC - a statement (which may be
true or false) which is used to reason out a
conclusion.

FACTORED EXPRESSION - a logic ex­
pression whose individual terms are not
distributed.

FALL TIME - the time required for a volt­
age down- swing to occur. The time which
elapses during the change from some
specific voltage, to zero volts.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12. GLOSSARY (Continued)

FALSE - the condition of not being true; the
condition of a flip-flop or logic gate being in
the 11 011 or "off11 state (flip-flop readout
light off); an input that is a 11011 • The side of
the flip-flop opposite the readout light (also
all flip-flop outputs and inputs, pins D, E,
F, opposite the readout light).

"FALSE" DffiECTOR OUTPUT - the output
pin (pin D) on the "FALSE" side of the flip­
flop; also known as the "FALSE" output of
the flip-flop.

"FALSE" FOLLOWER INPUT - the input pin
(pin F) on the 11 FALSE11 side of the flip-flop
which causes steering depending upon whether
or not an input voltage is present.

"FALSE" OUTPUT - the output pin (pin D) on
the "FALSE" side of the flip-flop; also known
as the "FALSE'' director output of the flip­
flop.

"FALSE" SIDE - the side of the flip-flop
opposite the readout light.

FEED - to enter an input.

FEEDBACK - a pulse command which is
generated by one position in a register (either
from a flip-flop or a gate) and is used to
trigger a random position in that same regis­
ter (i.e., a non-adjacent position). Usually
referred to as a pulse command which is
generated by the last position on the left and
used to trigger the first position on the right.

FIJP-FLOP - an electronic computer circuit
(also called a BISTABLE MULTIVIBRATOR)
that is capable of displaying a binary number
as either a 11111 or a 11011 (in this case, with a
readout light that is on or off) and will change
state with the proper pulse command.

FLOW CHART - a block pictorial representa­
tion (each block containing a brief description)
of individual steps which take place in a more
complicated computer operation.

FLOW DIAGRAM - see FI.IJW CHART.

161

FLUSH LEFT - the condition of two num­
bers of unequal digit length written, one
below the other, so that first digits at
the extreme left line up. The other digits
to the right are then written successively
one below the other until there are no more
digits.

FLUSH RIGHT - the condition of two num­
bers of unequal digit length written, one
below the other, so that the first digits at
the extreme right line up. The other
digits to the left are then written success­
ively one below the other until there are
no more digits.

FOLLOW'tR INPUTS - the input pins on
the flip-flop (pins C and F) which will or
will not cause a change of state to take
place, depending on whether or not an in­
put voltage is present, with the next pulse
command. See STEERING INPUTS.

FRACTION - two numbers, Written one
over the other, separated by a horizontal
line to show that a division can be perform­
ed; the ratio between two numbers. The
top number is called the NUMERATOR and
the bottom number is called the DENOM­
INATOR.

FRACTION, BINARY - a fraction whose
numerator and denominator are expressed
in the binary (base 2) number system.

FRACTION, DECIMAL - a fraction whose
numerator and denominator are expressed
in the decimal (base 10) number system.

FRACTIONAL - that portion of a number
which is written to the right of a "point"
(i. e. , "decimal point" or "binary point")
which represents that part of the number
less than unity (1). This part of the number
is represented by successive negative
powers of the base system being used.

FRACTIONAL, BINARY - that portion of a
binary number which is written to the right
of the binary point to represent that part of
the number less than unity (1). This part of
the number is represented by successive
negative powers of 2 (i.e. , 1/2, 1/4, 1/8,
1/16, 1/32, 1/64, etc.).

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

162

12. GLOSSARY (Continued)

FRACTIONAL, DECIMAL - that portion of
a decimal number which is written to the
right of the decimal point to represent that
part of the number less than unity (1). This
part of the number is represented by suc­
cessive negative powers of 10 (i.e., 1/10,
1/100, 1/1000, 1/10000, etc .).

FRACTIONAL, INFINITE - a fractional ob­
tained by repeated division of two finite
numbers . Tbe repeated division goes on
indefinitely and the digits in the fractional
repeat themselves in a given sequence.

FRACTIONAL, IRRATIONAL - a fractional
obtained, for instance, when extractin-g the
root of a number which is not a perfect
power, or by calculating constants such as
"77' " and "e"; the digits are calculated in
endless sequence, but do not demonstrate
any pattern of repetition.

FULL ADDER - the complete logic circuitry
which generates both a ''sum" and a "carry"
output.

FULL SUBTRACTER - the complete logic
circuitry which generates both a "difference"
and a "borrow" output.

FUNCTION, LOGIC - an expression which
contains one or more logic operators indicat­
ing logic operation(s} to be performed; a
specific logic operation such as "AND" or
IIOR".

GA TE 1 "AND" - an electronic circuit which
forms a logic gate (represented by a semi­
circle) whose output is a 11111 only when all of
its inputs are 11111 • The gate output is 11011 for
all other combinations of inputs.

GATE, "EOR" - an "exclusive or11 gate. An
electronic circuit which forms a logic gate
whose output is a 11111 if, and only if, ~ of
its binary inputs is a 11111• The gate output is
"01' for all other combinations of inputs.

GATE , INVERTER - an electronic circuit
which forms a logic gate with only a single
input and whose output is exactly opposite of
its input.

GATE, LOGIC - an electronic circuit
which performs a logic operation (i. e. ,
"AND", "OR", etc.).

GA TE 1 "NAND" - an electronic circuit
which forms a logic gate whose output is
a "0" only when all of its inputs are 11111 •

The gate output is 1'1" for all other com­
binations of inputs. An inverted 11AND"
gate. Represents "NOT AND" or a nega­
tive "AND" gate logic function.

GA TE, "NOR" - an electronic circuit
which forms a logic gate whose output is
a 11111 only when all of its inputs are "0" .
The gate output is 11011 for all other com­
binations of inputs . An inverted "OR''
gate. Represents "NOT OR'1 or a negative
"OR" gate logic function.

GA TE, "OR" - an electronic circuit which
forms a logic gate (represented by a tri­
angle) whose output is "0" only when all
of its inputs are 11011 • The gate output is
"1" for all other combinations of inputs.

GA TE, "SUM" - an electronic circuit
which forms a logic gate whose output is a
11111 only when the parity of all 11111 inputs,
regardless of how many, is odd. The gate
output is 11011 if the parity of all 11111 inputs
is even.

GATE NOMENCLATURE - names for logic
gates determined by the following general
format: (1) Identify the gate logic function.
(2) Identify the number of identical logic
gates on a printed circuit card. (3) Identify
the number of inputs per gate.

GENERATOR, COMMAND - a binary count­
er which is used in conjunction with "AND11

gates in order to generate a repetitive
series of command pulses. An "n"-bit
counter can generate up to 2n repetitive
command pulses.

GENERA TOR, PULSE - an electronic cir­
cuit (also called an ASTABLE MULTIVIBRA­
TOR) that generates a repetitive square
wave voltage output that swings from 111"
(voltage present) to 1101' (no voltage); the
command device that makes the flip-flops
work automatically.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12. GLOSSARY (Continued)

GROUP, TO - to use parentheses, brackets,
braces, or an extension of the "overhead
bar" to set off a part of a logic function from
the rest of the expression, or to clarify (by
isolating part(s) of a logic function) where
ambiguities can exist.

HALF ADDER - the logic circuitry which
generates only a "sum'' output and not a
"carry" output; (also called a "SUM" gate).

HALF SUBTRACTER - the logic circuitry
which generates only a "difference" output;
and not a "borrow" output; (also called a
"SUM" gate} the half-adder and half­
subtracter are identical as are the "sum"
and "difference" outputs.

HALT - to stop the command pulse generator
at the proper precise instant (accomplished
with the use of a diode wire and a control
flip-flop).

HALT COMMAND - the command signal
which turns off the pulse generator (stops
the pulse). This command signal triggers
a control flip-flop (see ''HALT11) which in
turn changes state and grounds out the com­
mand pulse signal through a diode wire.

HALT CONTROL - the flip-flop used with
the diode wire to control the command pulse
generator signal.

HANG UP - the inability of a flip-flop to be
triggered from a pulse command. Examples
are the use of an "AND" gate for triggering
when at least one input to that "AND" gate is
always "0", or the use of an "OR" gate for
triggering when at least one input to that
''OR" gate is always 11111 •

IDENTITIES, FUNDAMENTAL - logic equal­
ities of accepted fact (i. e . , need not be
proven) which define basic relationships
between two or more logic quantities.

IDENTITY I LOGIC - an expression of equal­
ity which denotes that for all possibilities of
11111 and "0", the "TRUTH" tables are the
same for the part of the expression to the
left of the equality as for the part of the ex­
pression to the right of the equality.

163

INFINITE FRACTIONAL - a fractional
obtained by repeated division of two finite
numbers . The repeated division goes on
indefinitely and the digits in the fractional
repeat themselves in a given sequence.

INPUT, BINARY - a binary 11111 or "0"
which is fed to a logic gate input or flip­
flop input in order to perform a logic
function or flip-flop triggering operation;
any pin on a flip-flop or logic gate which
can receive a binary output signal.

INTRINSIC PROBLEM - the inability of
a computer circuit or wiring project to
work properly even though there is ap­
parently no mistake in the circuit
construction or in the wiring.

INVERTER GATE - an electronic circuit
which forms a logic gate with only a
single input and whose output is exactly
opposite of its input.

mRA TIONAL FRACTIONAL - a fractional
obtained, for instance, when extracting
the root of a number which is not a perfect
power, or by calculating constants such
as ''7r"' and "e"; the digits are calculated
in endless sequence, but do not demon­
strate any pattern of repetition.

"L" LINE - an "L"-shaped line (reversed
"L") with a long bottom which is drawn to
the left of each square root remainder
and is used to separate each new square
root divisor from its associated remainder.

LABEU) - identifying statements or num­
bers which are used to describe flip-flop
or logic gate relative positions; also,
identifying statements or numbers which
describe register, command, process,
control, or project functions. These
statements and/or numbers may be labeled
on each project (after completion) for
clarification.

LAW, LOGIC - a relation which is proved
or assumed to bold between other logic
expressions (the relationship is expressed
by a logic equality).

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

164

12. GLOSSARY (Continued)

LEAKY - the condition of a diode or
transistor that does not completely block
the flow of voltage and current in the direc­
tion where the flow should be blocked.

LEAP YEAR - a year which has 366 days
instead of 365 days . Occurs in all non­
century years divisible by 4, and in all
century years divisible by 400.

WGIC - the science of reasoning (i. e. ,
making use of known facts to reason out a
conclusion).

LOGIC DIAGRAMS - drawings which illus­
trate how flip-flops and logic gates must be
wired up to perform specific computer
functions; the use of symbols to represent
flip-flop, logic gate, and pulse generator
electronic circuits without drawing out the
full electrical schematic each time. Dots
on the symbols are used to represent pin
connections. Lines which connect these dots
from one symbol to another represent all
wire connections (power connections are not
shown).

LOGIC GA TE - an electronic circuit which
performs a logic operation (i.e. , 11AND",
"OR", etc.).

LOGIC GATING - using logic gates to per­
form logic operations on flip-flop outputs.

LOGIC NOTATION - the use of symbols such
as the "dot" (·). "wedge'' (v), "plus 11 (+),
"triangle11 (v), 11eq_ual11 (=), and the overhead
"bar" (-) in conjunction with appropriate
capital letters (to represent logic facts) to
denote logic operation(s) .

LOGIC OPERA TOR - a symbol which indi­
cates that a logic function (such as "AND11

or "OR") is to be performed. Examples of
logic operators are: The 11wedge11 (v), the
"dot" (·) , the 'plus11 (+), the "triangle" (v)
and the overhead "bar11 (-).

MEMORY - a wired configuration of flip­
flops which stores binary information. The
accumulator, which displays and stores an
answer, can be considered a memory.

MILLENIUM - a time interval of 1000 years.

MINUEND - that number from which
another number is to be subtracted.

MULTIPLICAND - that number which is
to be multiplied by a second number.

MULTIPLICAND REGISTER - the register
containing the number which is to be
multiplied by a second number (in the
"multiplier" computer projects).

MULTIPIJCATION CONTROL- a wired
configuration of flip-flops with or without
logic gates which generates pulse signals
to perform the multiplication process
(see MULTIPIJER CONTROL).

MULTIPLIER - that number by which
another number is to be mul~plied.

MULTIPIJER, CUMULATIVE-ADDITION -
a wired computer project which performs
multiplication by successive steps of ad­
dition rather than by full logic gating.

MULTIPLIER, FULL LOGIC - a wired
computer project which performs multi­
plication only with the use of logic gates.
There are no intermediate steps of
addition.

MULTIPLIER CO TROL - that register
(in the cumulative-addition multiplier)
which generates pulse signals for the
intermediate steps of addition and stops
the multiplication process when all the
addition steps have been completed.

MULTIPLIER REGISTER - the register
containing the number by which another
number is to be multiplied (in the "multi­
plier" computer projects) .

MULTIPIJER SENSE - logic gates (in the
cum ulative--addi tion multiplier) which
determine when the last digit to the right
in the multiplier register is a 111" and, if
so, causes an intermediate step of ad­
dition to take place.

"NAND" GATE - an electronic circuit
which forms a logic gate whose output is a
"0" only when all of its inputs are "1".
The gate output is 11111 for all other

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12. GLOSSARY (Continued}

11NAND" GATE (continued)
combinations of inputs. AA inverted "AND11

gate. Represents "NOT AND 11 or a negative
"AND" gate logic function.

''NAND" LOGIC OPERA TJON - the logic op­
eration which is the negative of "AND'' logic
operation and is denoted by a "dot" and an
overhead "bar" across the entire expression;
the operation which answers the question:
"Is at least one fact 'FALSE'?'' or 111s at
least one input 'O' ? 11

NEGATION - employs the use of an overhead
"bar" to denote "not A" when placed over
logic fact A.

NEGATION I DOUBLE - the process of in­
verting twice, or inverting the negative of a
logic fact A (i.e. , "not not A") to revert it
to the positive (i.e. , the original fact "A").

NOISE, ELECTRONIC - abrupt power volt­
age fluctuations or line voltage fluctuations
which cause unwanted flip-flop triggering.
Noise occurs during the entering and cancel­
ling of binary numbers . When this happens,
other flip-flops may change state for no
observed apparent reason.

"NOR" GATE - an electronic circuit which
forms a logic gate whose output is a "l"
only when all of its inputs are 110 11 • The
gate output is "0" for all other combinations
of inputs. An inverted "OR" gate. Repre­
sents ' OT OR" or a negative "OR" gate
logic function.

"NOR" LOGIC OPERATION - the logic oper­
ation which is the negative of "OR" logic
operation and is denoted by a "wedge" and an
overhead "bar" across the entire expression;
the operation which answers the question:
"Are all the facts 'FAL5E' ? 11 or "Are all
inputs 'O' ?"

NORMAL YEAR - a time interval of exactly
365 days.

NOTATION I LOGIC - the use of symbols
such as the "dot" (·), "wedge" (v), ''plus"
(+), "triangle11 (v), 11equal11 (=), and the over­
head "bar" (-) in conjunction with appropri­
ate capital letters (to represent logic facts)
to denote logic operation(s).

165

NU MERA TOR - the top part of a fraction.

"OFF" - the condition of a flip-flop or
logic gate whose output is a "0".

110FF" STATE - the condition of a flip­
flop light being off; a flip-flop in the
''FALSE" or 110 11 state; the condition of a
logic gate whose output is 11011 •

''ON" - the condition of a flip-flop or logic
gate whose output is a "1".

110N1' STATE - the condition of a flip-flop
light being on; a flip-flop in the "TRUE"
or 11 111 state; the condition of a logic gate
whose output is ''1".

OPEN - no electrical connection between
two specified electrical points {i.e. ,
pins).

OPERA TOR, LOGIC - a symbol which
indicates that a logic function {such as
"AND" or "OR") is to be performed.
Examples of logic operators are: the
"wedge" {v) , the "dot" (·), the "plus" (+),
the "triangle" (V), and the overhead 11 bar11

,-).
''OR" GA TE - an electronic circuit which
forms a logic ga~e {represented by a tri­
angle) whose output is "O" only when all
of its inputs are 11011 • The gate output is
"1" for all other combinations of inputs.

110R" LOGIC OPERATION - the logic oper­
ation denoted by the "wedge11 (v); the
operation which answers the question:
"Is at least one fact 'TRUE'?" or "Is at
least one input 11' ?"

OUTPUT I BINARY - any pin of a flip-flop
or logic gate that generates a binary 11111

or 11011 voltage signal which results from
one or more input signals. Any pin on a
pulse generator which generates a pulse
voltage signal.

OVERFLOW - the "carry" or "borrow"
output generated by the last flip-flop at the
extreme left in a register.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

166

12. GLOSSARY (Continued)

PARENTHESES (} - symbols which denote
logic grouping along with brackets and
braces.

PARITY - the condition of a num her being
even or odd (i. e. , 11even11 parity or 11odd"
parity).

PIN - a terminology used to describe a cir­
cuit connection point. Since the printed
circuit board configurations for all circuits
described with.in are designed with inserted
pin (or "terminal") connections at the
proper points, the term 11 PIN11 has been used
to describe these points .

PINS, POWER - the two pins where the
positive and negative power connections must
be made. These power connections must be
made on each ci.rcuit in order for it to oper­
ate .

POINT - a period (.) used to split a number
into two parts: the left part represents that
portion of the number which is greater than
unity (1) and the right part represents that
portion of the number which is less than
unity (1). The point separates the fractional
(right) from the whole number portion (left).

POINT, BINARY - a period (.) used to split
a binary number into two parts: the left part
represents that portion of the number which
is greater than unity (1) and the right part
represents that portion which is less than
unity (1). The binary point separates the
binary fractional (right) from the binary
whole number portion (left).

POINT I DECIMAL - a period(.} used to
split a decimal number into two parts: the
left part represents that portion of the
number which is greater than unity (1) and
the right part represents that portion which
is less than unity (1). The decimal point
separates the decimal fractional (right) from
the decimal whole number portion (left).

POLARITY - the condition of a voltage pin,
battery terminal, or power supply terminal
being positive (11+11) or negative (1'-'').
Battery, power supply, and voltage pin pol­
arities must be properly wired for all units
in order for them to operate properly.

POST MERIDIEM - after noon (abbre­
viated P . M.); denotes a time period of
half a day starting from noon hour up to,
but not including, zero hour (midnight) of
the next day (i. e. , the time period during
the afternoon and evening hours).

POWER SOURCE - a battery or a power
supply which supplies voltage to all elec­
tronic units in order for them to operate.

PROBLEM, INTRINSIC - the inability of
a computer circuit or wiring project to
work properly even though there is
apparently no mistake in the circuit
construction or in the wiring.

PRODUCT - the result obtained by multi­
plying two or more numbers together.

PRODUCT REGISTER - the register (row
of flip-flops) which indicates the answer
after a multiplication is performed (in
the "multiplier" computer projects).

PROJECT, BASIC - a very simple com­
puter wiring project which usually
consists of a few flip-flops, a pulse gen­
erator, but contains no logic gates.

PROJECT, COMPUTER - a wired con­
figuration of flip-flops and logic gates
which performs computer operations.

PROJECT, NON-GATED - a computer
wiring project which contains no logic
gates.

PULSE - a square wave voltage output
that is either at ''0" or at 1'1 ". The pulse
signal occurs during the "down-swing" or
"fall" from "1" to "0"; may be generated
by a pulse generator, flip-flop, or logic
gate.

PULSE GENERATOR - an electronic cir­
cuit (also called an ASTABLE MULTI­
VIBRA TOR) that generates a repetitive
square wave voltage output that swings
from "1" (voltage present) to "O" (no
voltage); the command device that makes
the flip-flops work automatically.

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12. GLOSSARY (Continued)

QUAD - a time interval of 400 years . Short
for QUAD CENTURY.

QUAD CENTURY - a time interval of 400
years.

QUOTIENT - the answ r obtained after divid­
ing one number by another.

QUOTIENT REGISTER - the register (row of
flip-flops) which indicates the answer after
the computer division process is completed
(in the "divider" computer project) .

RADICAL cL} - a mathematical notation
which indicates that a root (i. e. , square root)
must be extracted from a number.

RADICAND - the number contained inside a
root radical; the number from which a
(square) root must be extracted.

RADICAND REGISTER - the register (row
of flip-flops) in which is entered the number
to be (square) rooted (in the "square rooter"
computer project) .

READOUT I COMPARATOR - the output of
either a gate or a flip-flop (the computer
output) in a comparator computer project
which indicates that a comparison is valid
if it is a 11111 and invalid if it is a "0".

READOUT LAMP - the light on the flip-flop
which is "on" when the "TRUE" output is a
1'1 11 and is "off" when the "TRUE" output is
a "0"; the display light on the flip-flop.

REFERENCE COLUMN - a column used to
translate a binary number into the decimal
system. The column is headed by the
appropriate power of 2 which the binary
digit position represents (i. e . , starting
from the right and proceeding to the left,
we have: (11111 , 11211 , 11411 , 11811 , "16", etc .).

REGISTER - a row of flip-flops wired to
perform a specific computer function such
as t.o co\Ult or to shift.

REGISTER, ACCUMULATOR - the register
(row of flip-flops) that displays an answer
such as in the case of the "adder" and "sulr
traoter" wiring projects .

167

REGISTER, ADDEND - the register (row
of flip-flops) in which the nwm er to be
added is entered (in the "adder" computer
project).

REGISTER, COMPLEMENTARY TRANS­
FORMATION - a register (row of flip-flops)
which will transform, by a computer
process, any number (entered into the
register} into its complement and display
the complement in the same register.

REGISTER, DIVIDEND - the register (row
of flip-flops) in which is entered the
number to be divided (in the "divider''
computer project).

REGISTER, DIVISOR - the register (row
of flip-flops) in which is entered the
number by which a second number is
being divided (in the "divider" computer
project).

REGISTER, MULTIPLICAND - the regis­
ter (row of flip-flops) in which is entered
the number which is to be multiplied by a
second number (in the "multiplier"
computer projects).

REGISTER, MULTIPLIER - the register
containing the number by which another
number is to be multiplied (in the "multi­
plier" computer projects).

REGISTER, PRODUCT - the register
(row of flip-flops) which indicates the
answer after a multiplication is performed
(in the "multiplier" computer projects).

REGISTER, QUOTIENT - the register
(row of flip-flops) which indicates the
answer after the computer division pro­
cess is completed (in the "divider"
computer project) .

REGISTER, RADICAND - the register
(row of flip-flops) in which is entered the
number t.o be (square) rooted (in the
"square rooter" computer project).

REGISTER, ROOT - the register (row of
flip-flops) which displays the answer
after the square root process is com­
pleted (in the "square rooter" computer
project) .

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

168

12. GLOSSARY (Continued}

REGISTER, SHIFT - a wired configuration
of flip-flops that will shift all "l's'' in a
binary number either one position to the
left or one position to the right with each
pulse command.

REGISTER, SUBTRAHEND - the register
(row of flip-flops) in which the number to be
subtracted is entered (in the "subtracter"
computer project) .

REGISTER, TRAVELIJNG "1" - the
register (row of flip-flops) which automat­
ically enters a 1'1" at the extreme left and
shifts it successively one position to the
right until it reaches the last position on
the right at which time it is shifted out (in
the 1'square rooter" computer project).

REMAINDER - the quantity that remains
after subtracting one number from another;
the quantity that remains in excess after
each division process is completed.

RESET - to change a flip-flop t.o the "off''
state (by shorting pins A and B together or
by applying current-limited voltage to the
"reset" input pin B); to change all flip-flops
in a register to the "O" state.

"RESET" INPUT - pin Bon the flip-flop
which will turn off the readout lamp when
a current- limited voltage is applied at that
point.

RESISTOR - a two-lead electronic device
which is used to limit electronic current.

RISE TIME - the time required for a volt­
age up- swing to occur. The time which
elapses during the change from zero volts,
to some specific voltage.

ROOT - a second number which, when
multiplied by itself a specified number of
times, will yield back the first number.

ROOT, SQUARE - a second number which,
when multipliE!d by itself, will yield back
the first number .

ROOT CONTROL - a wired configuration
of flip-flops with or without logic gates
which generates pulse signals to perform
the square root process (in the "square
rooter" computer project).

ROOT REGISTER - the register (row of
flip-flops) which displays the answer
after the square root process is completed
(in the "square rooter" computer project).

ROUNDING "OOWN'' - (see ROUNDING
OFF) leaving unchanged the first digit to
the left of the 11breaking point" when
rounding off.

ROUNDING "OOWN", BINARY - (see
ROUNDING OFF, BINARY) leaving un­
changed the first binary digit to the left
of the "breaking point" if the first binary
digit to the right of the "breaking point"
was 11011 •

ROUNDING "DOWN", DECIMAL - (see
ROUNDING OFF, DECIMAL) leaving
unchanged the first digit to the left of
the 11breaking point" if the first digit to
the right of the "brealdng point" was 4 or
less.

ROUNDING OFF - the process of changing
to "0" all digits in a number whlch are to
the right of a specified position in that
number, and dropping those digits if they
are in the fractional portion. The first
digit to the left of the "breaking point" is
either increased by one unit or left un­
changed depending on the first number to
the right of the "breaking point".

ROUNDING OFF I BINARY - the process
of changing to 11011 all binary digits which
are to the right of a specified "breaking
point", and dropping those digits if they
are in the binary fractional portion. The
first digit to the left of the ''breaking
point" is increased by "1" if the first
digit to be changed was "1", and left un­
changed if the first digit to be changed
was already 11 011 •

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12. GLOSSARY (Continued)

ROUNDING OFF, DECIMAL - the process
of changing to 11011 all digits which are to
the right of a specified "breaking point",
and dropping those digits if they are in the
fractional portion. The first digit to the
left of the "breaking point" is increased by
1 unit if the first digit to be changed was 5
or more, and left unchanged if the first to
be changed was 4 or less.

ROUNDrnG "UP" - (see ROUNDING "OFF")
increasing by one unit the first digit to the
left of the "breaking point".

ROUNDrnG "UP" I BINARY - (see ROUND­
ING OFF, BINARY) increasing by "l" the
first binary digit to the left of the "breaking
point" if the first binary digit to the right of
the "breaking point'' was "l".

ROUNDING "UP", DECIMAL - (see
ROUNDING OFF, DECLl\iAL) increasing by
1 unit the first digit to the left of the "break­
ing point" if the first digit to the right of
the "breaking point" was 5 or more.

"SAMPLE" COMMAND - a command pulse
which causes the sample-and-hold logic to
copy a number from one register into a
second register, leaving the number in the
first register unchanged.

SAMPLE- AND-HOLD- the process of
sensing a number entered in one register
and copying it into a second register with­
out removing the basic number from the
first register; a wired configuration of
electronic logic gates which will perform
the operation described above.

SENSE - a wired configuration of logic
gate(s) which determines some condition
about a register or registers (i. e. , whether
a number is present in a register; whether
the last digit to the right in a register is
"1", etc.) and, based on this condition, will
control the execution of some command.

SENSE, DIGIT - the use of an 11OR" logic
gate to determine whether or not a number
is present in a register.

169

SET - to change a flip-flop to the "on"
state (by shorting pins D and E together
or by applying c urrent-limited voltage
to the "set" input pin E),

"SET" INPUT - pin E on the flip-flop
which will turn on the readout lamp when
a current-l imited voltage is applied at
that point.

SHIFT - to transfer all 111 's 11 in a binary
number either one position to the left or
one position to the right.

SHIFT ADDER - a wired configuration of
flip-fl.ops that consists of one full adder
and three shift registers. Two shift
registers shift the two numbers to be
added through the full adder and the
answer is shifted out in the third shift
register.

"SHIFT" COMMAND - a command pulse
which causes the number entered in a
shift register to advance one position
either to the right or the left (depending
on the type of shift register).

SlllFT REGISTER - a wired configuration
of flip-flops that will shift all "1' s" in a
binary number either one position to the
left or one position to the right with each
pulse command.

SlllFT REGISTER, LEFT - a wir ed con­
figuration of flip-flops that will shift all
1111 s" in a binary number one position to
the left with each pulse command.

SHIFT REGISTER, RIGHT - .a wired con­
figuration of flip-flops that will shift all
1111 s" in a binary number one position to
the right with each pulse command.

SHIFT SUBTRACTER - a wired configur­
ation of flip-flops and logic gates that
consists of one full subtracter and three
shift registers. Two shift registers shift
the two numbers through the full subtract­
er and the answer is shifted out in the
third shift register.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

170

12. GLOSSARY (Continued)

SHORT - a direct-wired connection between
two electrical points such as touching or
wiring two pins together.

SIGNAL - an electrical command generated
by a pulse on the "down-swing'' from 11111

(6 volts) to "0" (0 volts) which will act as a
trigger and cause one or more flip-flops to
change state.

SQUARE ROOT - a second number which,
when multiplied by itself, will yield back
the first number.

SQUARE ROOTER - a computer project
which consists of a wired configuration of
flip-flops, logic gates, and pulse generators
which will extract the square root from a
given binary number.

SQUARE WA VE - an electrical fluctuation
between O volts and some other voltage (for
example, 6 volts) such that the rise time
and fall time are very small compared to
the time duration at 6 volts and O volts
which should be nearly equal. Shown as
follows:

STATE - the condition which describes a
flip-flop or logic gate as being "on" ("1",
"TRUE") or "off" {''0", "FAI.SE").

STEERING INPUTS - the input pins on the
flip-flop (pins C and F) which will or will
not cause a change of state to take place
depending on whether or not an input voltage
is present. The pins C and F must have
opposite inputs (i.e., one pin 11111 and the
other "0") to provide steering. If pin C
input is a "1", the flip-flop will change
state to "0" if in the "1" state, and remain
"0" if already in the "0" state. If pin F
input is a "1", the flip-flop will change
state to "1" if in the "0" state, and will re­
main "1" if already in the "111 state.

SUBROUTINE - a specific computer
process which forms part of another
more complicated computer process.
Example: the addition process is a sub­
routine in the cumulative-addition
multiplier.

SUBTRACT CONTROL - the lfhalt" com­
mand which is used t.o control (or stop)
the subtraction process in the "sub­
tracter" configuration.

SUBTRACTER - a wired configuration of
flip-flops and/ or logic gates which will
perform the arithmetic process of
subtraction.

SUBTRACTER, FULL - the complete
logic circuitry which generates both a
"difference" and a "borrow" output.

SUBTRACTER, HALF - the logic cir­
cuitry which generates only a "difference"
output and not a "borrow'' output; (also
called a "SUM" gate) the half-adder and
half-subtracter are identical as are the
"sum" and "difference" outputs.

SUBTRACTER, LOGIC - a wired configur­
ation of logic gates and/or flip-flops which
will perform subtraction (in binary).

SUBTRACTER, SHIFT - a wired config­
uration of flip-flops and logic gates that
consists of one full subtracter and three
shift registers. Two shift registers shift
the two numbers through the full sub-
trac ter and the answer is shifted out in
the third shift register.

SUBTRACTER, NON-GATED BINARY - a
wired configuration of only flip-flops that
will perform subtraction (i.e. , that will
allow a binary number to be subtracted in
one register and the answer to be displayed
in a second register). Almost the same
as the non-gated adder except that both
upper and lower registers are "UP''
counters.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

12, GLOSSARY (Continued)

SUBTRACTIO IDENTITY - a logic ex­
pression which defines a 11difference", a
"borrow", or both for two or more binary
numbers.

SUBTRAHEND - that number which is to be
subtracted from another number.

SUBTRAHEND REGISTER - the register
(row of flip-flops) in which the number to be
subtracted is entered (in the "subtracter"
computer project).

SUM - the answer which results from the
addition of two numbers; the binary digit
which represents the addition of two other
binary digits, ignoring the "carry".

"SUM" GA TE - an electronic circuit which
forms a logic gate whose output is a "1 11 only
when the parity of all 11111 inputs, regardless
of how many, is odd. The gate output is "0"
if the parity of all "1" inputs is~-

11SUM" LOGIC OPERATION - the logic oper­
ation denoted by the "plus" (+); the operation
which answers the question: "Is the number
of 'TRUE' facts odd?" or "Is the number of
111 inputs odd?"

TERM, LOGIC - that singular or multiple
part of a logic expression which is separated
by a logic operator (i.e. , grouped by a logic
operator).

THEOREM, LOGIC - a logic equation which
can be proved by means of a "TRUTH" table
or by means of other logic equations or
expressions.

TIME MACHINE - a computer project which
consists of a wired confi.guration of flip-flops
and logic gates controlled by a very accurate
timing pulse which will keep time in the same
manner as a clock and can also be expanded
to determine days, months, years, leap
years, etc.

TRANSFER - to use a command pulse to
place a number (or digit) already entered in
one register (or flip-flop) directly, unchanged,
into a second register (or flip-flop). The

171

TRANSFER (continued)
original register (or flip-flop) is cleared
during the process. An example is the
non-gated "adder" computer project

, where a number is transferred from the
addend register to the accumulator.

TRANSISTOR - a three-lead electronic
device which is used to control the flow
of electronic voltage and current (see
also BASE, COLLECTOR, and EMITTER).

TRAVELLING 11111 REGISTER - the
register (row of flip-flops) which auto­
matically enters a "l" at the extreme
left and shifts it successively one position
to the right until it reaches the last
position on the right at which time it is
shifted out (in the "square rooter" com­
puter project).

TRIGG ER - the input pin (pin G) on a flip­
flop where a pulse command signal will
cause the flip-flop to change state; to
cause a flip-flop to change state.

TRIGGER INPUT - the input pin (pin G)
on a lip-flop where a pulse command
signal will cause the flip-flop to change
state.

TROUBLESHOOT - to locate and determine
the cause of problems that may occur in
the wiring or operation of computer
circuits.

TRUE - a proven affirmative logic fact;
opposite of IIFALSE"; the condition of a
flip-flop or logic gate being in the "1" or
"on" state (flip-flop readout light on); an
input that is a 11111 • The side of the flip­
flop with the readout light {also all flip-flop
outputs and inputs, pins A, B, and C, on
the same side as the readout light).

"TRUE" DIRECTOR OUTPUT - the output
pin (pin A) on the "TRUE" side of the flip­
flop; also !mown as the "TRUE" director
output of the flip-flop.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

172

12. GLOSSARY (Continued)

"TRUE" FOLLOWER INPUT - the input pin
(pin C) on the "TRUE" side of the flip-flop
which causes steering depending upon
whether or not an input voltage is present.

"TRUE" OUTPUT - the output pin (pin A) on
the "TRUE'' side of the flip-flop; also !mown
as the "TRUE" output of the flip-flop.

"TRUE" SIDE - the side of the flip-flop with
the readout light.

"TRUTH" TABLE - a tabular representation
of logic expressions and facts which indicates
all possibilities of "TRUE" and "FALSE".

"UP" COUNTER - a binary counter that
starts from zero and increases its value by
"1" with each pulse signal input. In other
words, it "counts upward" to any desired
number.

"UP-DOWN" CONTROL - the extra logic
gates wired into a binary counter so that the
free-running counter will count alternately
"UP" and then "DOWN", changing between
"UP" and "DOWN" when an overflow occurs.

"UP-DOWN" COUNTER - a binary counter
wired with extra logic gates so that the free­
running counter will count alternately "UP"
and then switch automatically to "DOWN"
after resetting from the "UP" count. It will
switch automatically back to "UP" after the
"borrow11 overflow is generated.

UP-SWING, VOLTAGE - the change of the
output of a pulse generator, flip-flop, or
logic gate, from zero volts, to a specific
voltage.

VOLTAGE, CURRENT- LIMITED - voltage
present when a resistor is placed in series
with the power source (the value of 1,000
ohms should be used for most current limit­
ing described in this text).

WIRE, DIODE - a wire with a diode spliced
in the middle. The main use for the diode
wire is to stop (or halt) the pulse from the
pulse generator.

WIRES, CONNECTING - hoop-up wires
of various lengths with alligator clips on
each end (or with stripped ends for
soldering) which are used to tie together
electrical points (pin connections) as
shown in the wiring diagrams.

WIRING DIAGRAM - that part of a logic
diagram which shows where wiring pin
connections must be made.

YEAR - a time interval of approximately
365 days, more accurately equal 365 days,
5 hours, 48 minutes, and 46 seconds.

YEAR, CENTURY - a year which ends in
"00" (is divisible by 100) such as 1700,
1800, 1900, 2000, and 2100.

YEAR, LEAP - a time interval which has
exactly 366 days instead of 365 days.
Occurs in all non-century years divisible
by 4, and in all century years divisible by
400.

YEAR, NORMAL - a time interval of
exactly 365 days.

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

INDEX

Accumulator, 71
Addend register, 71
Adder, half, 53
Adder, logic, 75-81
Adder, non-gated binary, 71-72
Adder, shift, 86-88
Addition, binary, 21, 22
Addition identities, 10-11, 17
"AND", 2, 7, 18, 42
"AND'1 gate, 42-44
"AND" & "OR" gate, 47-48
"AND" & "OR11 gate, negative, 48-50
Ante meridiem, 141
Associative laws, 6, 8
As table m ul tiv ibrator, 3 9

Bar, overhead, 2, 4, 8, 10
Base, 67
BCD counter, 74-75
Binary, 5
Binary addition, 21-22
Binary coded decimal counter, 74, 75
Binary complement, 34, 35
Binary, conversion from decimal, 25-28
Binary, conversion to decimal, 20, 28
Binary count, 21
Binary division, 23- 24
Binary "down" counter, 68-69
Binary electronic computer circuits, 36
Binary fractionals, 24-25
Binary fractions, 29
Binary multiplier, full-logic, 91-98
Binary multiplication, 22-23
Binary number system, 20
Binary point, 23-25, 33
Binary "rounding off", 34
Binary shift register, 69-70
Binary square root, 32-33
Binary subtraction, 22
Binary-to-decimal decoder, 153-154
Binary "up" counter, 68
Bistable multivibrator, 36
Boards, mounting, 59
Boolean Approach, 5
"Borrows", 22
Bracket, overhead, 25
Brackets, 2, 6, 8
Braces, 2

Care of units, 66-67
11Carry", 21
Cautions, 58
Century, Quad, 136

173

Circuits, binary electronic computer, 3 6
Circuits, electronic gate, 18
Circuits, LJBE electronic, 36, 37, 38, 39
Clock, time machine, 139-150
Collector, 67
Column, truth, 13, 15
Commands, 62- 64
Commutative laws, 7
Comparator, 11 Equal To", 115-118
Comparator, "Greater Than\' 109-112
Comparator, "Greater Than or Equal

To", 122-125
Comparator, "Less Than", 112-115
Comparator, "Less Than or Equal To",

126-129
Comparator, "Unequal To", 118-122
Comparators, 108-109
Comparison, general, 13 0-134
Complement, binary, 34-35
Computer, electronic, circuit operation,

58
Computer, electronic, logic expressions,

19
Computer, electronic, logic notation, 18
Conclusion, 2, 3, 4, 5, 36, 42
Connections, 58-59
Connections, power pin, 61
Connections, wire, 60
Converse, 10
Conversion, binary to decimal, 20, 28
Conversion, decimal to binary, 25-27
Count, binary, 21
Counter, BCD, 74-75
Counter, binary coded decimal, 74-75
CoWtter, binary, "down", 68-69
Counter, binary, "up11 , 68
Counter, "day-of-the-month", 139
Counter, gated 11 up-down11 1 90-91
Counter, "hour", 139
Counter, "minute", 139
Counter, "second", 139
Counter, "year" BCD decade, 139
Cumulative-addition multiplier, 99-101

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

174

INDEX (Continued)

Debugging, 65-66
Decimal, conversion from binary, 20, 28
Decimal, conversion to binary, 25-27
Decimal fractionals, 24
Decimal point, 23
Decoder, binary-to-decimal, 153-154
DeMorgan's theorems, 7, 13, 14
Denominator, 29
Diagrams, logic , 60-61
Dice, electronic, 150-153
Diode wire, 59
Direct display, 55-57
Direct output, 56
Director output, "false", 3 7
Director output, "true", 37
Distributed expression, 8
Distributive laws, 8, 15
Dividend, 23, 24
Divider, 101-103
Division, binary, 23- 24
Divisor, 23, 24
"Dot", 2, 4
Double negation, 10
Down-swing, 37-39
Down-swing triggering, 43 , 45

Electronic circuits, LIBE, 36, 37, 38, 39
Electronic computer circuits, binary, 36
Electronic computer circuit operation, 58
Electronic computer logic expressions, 19
Electronic computer logic notation, 18
Electronic dice, 150-153
Electronic gate circuit, 18
Electronic gate symbols , 18
Emitter, 67
"EOR", 2 , 3 , 4 , 5, 8, 10, 18, 42
"EOR" gate, 50-52
"Equal'', 2
"Equal To" comparator, 115-118
"Even parity", 53
"Exclusive OR" gate, 50-52
Expression; distributed, 8
Expression, factored, 8

Expressions, logic, 19
Extracting square root, 29-33

Fact, 2 , 5, 12, 36, 42
Factored expression, 8
Fall, 38

"False", 2, 3 , 4, 5, 12, 20, 36, 37, 38
11False" director output, 37
11Falsett follower input, 37
Flip- flop, 18, 36-39
Flip-flop, LIBE, 43
Fractionals, binary, 24-25
Fractionals, decimal, 24
Fractionals , infinite, 25
Frac tionals, irrational, 25
Fractions , binary, 29
Fundamental identities, 7, 9, 16, 17
Fundamental laws , 7
Fundamental logic theorems, 7

Gate, 2, 19
Gate, "AND", 42-44
Gate, "AND" & "OR", 47-48
Gate, "AND" & "OR " negative, 48-50
Gate, electronic, 18
Gate, electronic, symbols, 18
Gate, "EOR", 50-52
Gate, "Exclusive OR", 50-52
Gate input pins, 43-45
Gate, inverter, 54-55
Gate, logic, 42
Gate, "NOT", 54-55
Gate, "OR", 45-47
Gate, parity, 53
Gate output triggering, 55-57
Gate, "SUM", 52-54
Gate, "SUMMATION", 52-54
General comparison, 130-134
Generator, pulse, 36, 39-41
Glossary, 155-172
"Greater Than" comparator, 109-112
"Greater Than or Equal To" comparator,

122-125
Group, 2

Half-adder, 53
Horizons, unlimited, 154

Identities, addition, 10-11, 17
Identities, fundamental, 9, 16, 17
Identities, logic, 7
Identities, special, 10
Inequality, 8

Infinite fractional, 25

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

\

INDEX (Continued)

Input, "false" follower, 37
Input pins, 47
Input, "reset", 3 7
Inputs, 2

Input, "set", 3 7
Input, "trigger", 37-38
Input, "true" follower, 3 7
Intrinsic problems, 65-66
Invert, 10
Inverter, 18, 42
Inverter gate, 54-55
Irrational fractional, 25
Irrational square root, 30
"V' line, 30, 32
Labels, 59-60
Laws, commutative, 7
Laws, distributive, 8, 15
Laws, logic, 7
Layout, physical, 58-59
Leap year, 136
"Less Than" comparator, 112-115
"Less Than or Equal To" comparator,

126-129
LIBE electronic circuits, 36, 37, 38, 39,

40, 42
LIBE flip-flop, 43
Logic, 2, 5
Logic adder, 75-81
Logic brackets, 6
Logic diagrams, 60-61
Logic expressions, 19
Logic functions, 2
Logic gates, 42
Logic interface, "day-month-year", 139
Logic interface, "leap-year, leap-century,

century", 139
Logic notation, 2, 18
Logic operation, 2, 3, 4, 18
Logic operators, 2, 12, 13
Logic parentheses, 6
Logic, "Sample-and-Hold", 88-90
Logic subtracter, 81-86
Logic symbols, 2, 18
Logical multiplication, 8
Logical "plus", 8

Mounting, 58-59
Mounting boards, 59
Multiplicand, 22, 23
Multiplication, binary, 22-23

Multiplication, logical, 8
Multiplication, numerical, 8
Multiplier, 22, 23

175

Multiplier, binary, full-logic, 91-98
Multiplier, cumulative-addition, 99-101
Multivibrator, astable, 39
Multivibrator, bistable, 3 6

"NAND", 2, 4, 42-45, 48- 50
Negation, 10, 12
Negation, double, 10
Negative "AND" & "OR" gates, 48-50
Nomenclature, 42
Non-gated binary adder, 71-72
Non-gated computer projects, 68
Non-gated subtracter, 72-73
"NOR", 2, 4, 42, 45, 48-50
"NOR" output, 45
"NOT" gate, 54-55
Number system, binary, 20
Numerator, 29
Numerical "plus", 8

Notation, electronic computer logic, 18

Odd parity , 53
Ohmmeter, 67
Operation, electronic computer circuit,

58
Operation, logic, 2, 3, 4, 18
Operators, logic, 2, 12, 13
"OR", 2, 3, 5, 7, 18, 42
"OR" gate, 45-47
"OR" output, 45
Output, direct, 56
Output, "false" director, 37
Output pins, 47
Output, pulse, 39
Output, "true" director, 37
Outputs, 2, 38
Overhead bar, 2, 4, 81 10
Overhead bracket, 25

Parentheses, 2, 6, 8, 10
Parity, 3
Parity, even, 53
Parity gate, 53
Parity, odd, 53
Physical layout, 58-59

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

176

INDEX (Continued)

Pins, gate input, 43, 45
Pins, input, 47
Pins, output, 47
"Plus", 2
"Plus", logical, 8

"Plus", numerical, 8
Point, binary, 23, 24, 25, 33
Point, decimal, 23
Positive, 10
Post meridiem, 141
Power pin connections, 61
Power sources, 61-62
Problems, intrinsic, 65-66
Product, 23
Projects, advanced computer, 74
Projects, non-gated computer, 68
Pulse generator, 36, 39-41
Pulse output, 39

Quad century, 136
Quotient, 23, 24

Radical, 29
Radicand, 104
Reference column, 26, 28
Register, addend, 71
Register, binary shift, 69-70
Register, complementary transformation,

70-71
Register, "month" shift, 139
Register, "Travelling 1", 105
Remainder, 23, 24, 30
Remainder, binary, 32, 33
Repair of units, 66-67
"Reset", 64, 65
"Reset'' input, 37 ·
Rise, 38
Root, square, 29-32
Root, square, binary, 32-33
Rooter, square, 104-108
Rounding "down", 34
Rounding "off", 34
Rounding llup", 34

"Sample-and-Hold" logic, 88-90
Science of reasoning, 2
"Senses", 62-64
"Set", 64-65

"Set" inp~t, 3 7
Shift adder, 86-88
Sources, power, 61-62
Special identities, 10
Square root, 29-31
Square root, binary, 32-33
Square rooter, 104-108
Square wave, 37, 39
Subtracter, logic, 81-86
Subtracter, non-gated binary, 72-73
Subtraction, binary, 22
''SUM", 2, 3, 5, 10, 18, 42
11SUM" gate, 52-54
"SUMMATION" gate, 52-54
Symbols, 2
Symbols, electronic gate, 18
Symbols, logic, 18
System, binary number, 20

Tables, truth, 12, 13, 14, 15, 16, 17,
21

Theorems, DeMorgan's, 7, 13, 14
Theorems, logic, 7
Time machine, 134-138
Time machine clock, 139-150
Transistor, 67
Triangle, 2, 3
Triggering, down-swing, 43, 45
Triggering, gate output, 55-57
Trigger input, 37-38
"True", 2, 3, 4, 5, 20, 36, 37, 38
"True" director output, 37
"True" follower input, 37
Truth column, 13, 15
Truth tables, 12, 13, 14, 15, 16, 17, 21

"Unequal To" comparator, 118-122
Units, care and repair of, 66-67
Unlimited horizons, 154
"Up-Down" control, 91
"Up-Down" counter, gated, 90-91
Up-swing, 37, 38

Year, 136

Wave, square, 37, 39
Wedge, 2, 4

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

INDEX (Continued)

Wire connections, 60
Wire, diode, 59
Wires, 59
Wiring, 60-61

177

http://www.SteamPoweredRadio.Com

www.SteamPoweredRadio.Com

tt ADDERS & SUBTRACTERS • SAMPLE & HOLD LOGIC
<

• MULTIPLIER l
•DJVIDER

• SQUARE ROOTER

• TIME MACHINE

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com

	libe digital computer logic0005
	libe digital computer logic0002
	libe digital computer logic0003
	libe digital computer logic0004

