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This book is for those who need a thorough basic discussion of digital computers and the 
binary number system. It is intended as a key to unlock the door to a fascinating world of 
the electronic computer circuits! I 
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1. INTRODUCTION 

This book represents an original new basic approach to computer logic to communicate 
the enjoyment of this vast field to the beginning experimenter . By making repeated use of 
only four simple LIBE•electronic circuits, the computer hobbyist can derive great satisfac­
tion from building up the many projects described in this text. These four circuits are the 
basic keys to the world of the computer I 

The logic symbolism used in the text was not chosen to totally agree with that used in 
other publications, but to communicate basic concepts to the reader . The notation and 
symbolism contained herein will be used for all future LIBE literature, papers, and dis­
cussions on computer logic and circuits. 

All information is presented in a direct manner for use as a textbook or handbook 
reference. The reader is further encouraged to seek out other books after becoming fam­
iliar with the contents of this publication. Readers partially familiar with some of the 
material in this book may skip over to the sections which are of interest . 

• T.M. 
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2. LOGIC OPERATIONS, NOTATION AND SYMBOLISM 

Logic is the SCIENCE OF REASONING. In other words, a set of FACTS are used to 
reason out a CONCLUSION. The computer logic GATE uses these facts (INPUTS) and 
determines a conclusion (OUTPUT). 

The logic functions discussed here are: 11AND11 , 11OR11 , 11SUM11 , "EOR11 , "NAND", 
and "NOR". Discussion of this section is limited to logic functions only. Section 7 con­
tains an intensive discussion on gates. 

LOGIC NOTATION consists mainly of the 11dot11 ( •), the 11wedge11 {v), the "plus" (+), 
the 11triangle11 (v), the "equal'' (=), and the overhead 11bar11 (-). The first five symbols 
will be referred to, throughout the rest of this book, as LOGIC OPERATORS. Parentheses, 
brackets, braces, and overhead bars are used to group together specific parts of logic 
expressions. The "equal1' sign denotes logical equality. The overhead 11bar" is used to 
denote a 11 FALSE" logic FACT which is opposite to the corresponding "TRUE" fact. The 
entire expression contained under an overhead "bar" is "FALSE''. Examples are: 

A = "not" A 

B = "not" B 

A· B ·C = "not" (A and Band C) 

2. 1 "AND" LOGIC OPERATION 

"AND" logic operation is denoted by the "dot" (· ). We denote the "AND" operation on 
four facts (A, B, C, D)* as follows: 

A-B·C·D 

If we consider the above expression "A and B and C and D", we draw the following 
conclusion: If and only if all facts are "TRUE", then the conclusion is "TRUE". If one 
or more facts are "FALSE", then the conclusion is "FALSE". Examples are: 

A· B ·C ·D = conclusion (TRUE) 

A- B ·c ·D = conclusion (FALSE) 

A· B ·C ·D = conclusion (FALSE} 

A- B ·C·D = conclusion (FALSE} 

The "AND" operation, in effect, answers the question: "Are all the facts 'TRUE'?" 

2. 2 11OR11 LOGIC OPERATION 

"OR11 logic operation is denoted by the "wedge" (v). We denote the "or" operation on 
four facts (A, B, C, D) as follows: 

AvBvCvD 

If we consider the expression "A or B or C or D1' above, we draw the following 
conclusion: If and only if all facts are "FALSE", then the conclusion is "FALSE". If one 
or more facts are "TRUE", then the conclusion is "TRUE". Examples are: 

*Each letter A, B, C, D stands for a specific fact. 
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2. 2 "OR" LOGIC OPERATION (Continued) 

AvBvCvD = conclusion (FALSE) 

AvBvCvD = conclusion (TRUE) 

AvBvCvD = conclusion (TRUE) 

AvBvCvD = conclusion (TRUE) 

3 

The "OR" operation, in effect, answers the question: "Is at least one fact 'TRUE'?" 

2. 3 "SUM" LOGIC OPERATION 

The "SUM" logic operation is denoted by the "plus" (+) . We denote the "sum" opera­
tion on four facts (A, B, C, D) as follows: 

A+B+C+D 

If we consider the expression "A plus B plus C plus D11 above, we draw the following 
conclusion: If and only if an odd number of facts are "TRUE" , then the conclusion is 
"TRUE". If an~ number of facts are "TRUE", then the conclusion is "FALSE". The 
conclusion, in this case, may be considered the PARITY (the condition of being even or 
odd) of "TRUE" facts. The conclusion depends only on an even or odd number of "TRUE" 
facts. Examples are: 

A+B+C+D = conclusion (FALSE) 

A+B+C+D = conclusion (TRUE) 

A+B+C+D = conclusion (FALSE) 

A+B+C+D = conclusion (TRUE) 

A+B+C+D = conclusion (FALSE) 

A+B+C+D = conclusion (FALSE) 

The "SUM" operation, in effect, answers the question: "ls the number of 'TRUE' 
facts odd ? " 

2. 4 "EOR" (EXCLUSIVE "OR") LOGIC OPERATION 

The "EOR" logic operation is denoted by the "triangle" (v). We denote the "eor" 
operation on four facts (A, B, C, D) as follows: 

AvBvCvD 

If we consider the expression "A eor B eor C eor 0" above, we draw the following 
conclusion: If and only if just~ fact is "TRUE", then the conclusion is "TRUE". 
However, if all facts are "FALSE 11 , or more than one fact is "TRUE" , then the conclusion 
is 11 FALSE11 • Examples are: 

AvBvCvD = conclusion (FALSE) 

AvB'ICvD = conclusion (TRUE) 

AvBvCvD = conclusion (TRUE) 

AVBvCvD = conclusion (FALSE) 

AvBvCvD = conclusion (FALSE) 
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2. 4 "EOR" (EXCLUSIVE "OR") LOGIC OPERATION (Continued) 

The "EOR" operation, in effect, answers the question: "Is there only~ 'TRUE' 
fact?" 

2. 5 "NANO" LOGIC OPERATION 

11NAND11 logic is simply the negative of "AND" logic operation. "NAND" logic opera­
tion is denoted by a "dot" and an overhead "bar" across the entire expression. The "NANO" 
operation on four facts is denoted as follows: 

A-B·C·D 

If we consider the above e.xpression "not (A and Band C and 0)'1, we draw the following 
conclusion: If and only if all facts are "TRUE", then the conclusion is "FALSE". If one 
or more facts are "FALSE", then the conclusion is "TRUE 11". Examples are: 

A- B ·C ·D = conclusion (FALSE) 

A· B ·C ·D = conclusion (TRUE) 

A· B ·C ·D = conclusion (TRUE) 

A· B -C -D = conclusion (TRUE) 

The "NANO" operation, in effect, answers the question: "Is at least one fact 
'FALSE'?" 

"NAND" is a combination of the two words "NOT AND". Further discussion of this 
11negativet1 logic will be held to a minimum because the positive "AND" logic is easier to 
explain. "NAND'' logic permits the use of simpler electronic gate circuitry. 

2. 6 "NOR'' LOGIC OPERATION 

"NOR" logic is simply the negative of 110R11 logic operation. "NOR" logic operation 
is denoted by a "wedge" and an overhead "bar" across the entire expression. The "NOR" 
operation on four facts is denoted as follows: 

AvBvCvD 

If we consider the above expression "not (A or B or C or D), we draw the following 
conclusion: If and only if all facts are "FALSE", then the conclusion is "TRUE". If one 
or more facts are "TRUE", then the conclusion is "FALSE". Examples are: 

AvBvCvI5 = conclusion (TRUE) 

AvBvCvD = conclusion (FALSE) 

AvBvCvD = conclusion (FALSE) 

AvBvCvD = conclusion (FALSE) 

The "NOR" operation, in effect, answers the question: "Are all facts 'FALSE' ? 11 

"NOR" is a combination of the two words "NOT OR". Further discussion of this 
"negative" logic will be held to a minimum because the positive "OR" logic is easier to 
explain. "NOR" logic permits the use of simpler electronic gate circuitry. 
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2. 7 FACTUAL EXAMPLES-THE BOOLEAN APPROACH 

The BOOLEAN APPROACH to logic is to impose the condition that all logic statements, 
reasons, conclusions, facts, etc., are either 11TRUE 11 or "FALSE". There are no con­
ditional steps between "TRUE" and 11 FALSE11 • 

ow, instead of using just letters, let us assign some statements of fact to the letters 
A, B, C, and D. 

A: Arizona is in the United States. 
B: Boston is in New York. 
C: California is on the West Coast. 
D: De.over is in Colorado. 

ow, through research, suppose we determine that A is 11TRUE 11 , Bis "FALSE", C is 
"TRUE", and D is "TRUE". We would have to replace 11B11 for statement (fact) "B" to 
denote that it is "FALSE". 

Consider: A· B · C · D = conclusion (FALSE). The conclusion represents a decision on 
the collection of information about the United States. A "FALSE" conclusion for the "A 0 11 

function means that not all the facts are "TRUE". 

Now consider: AvBvCvD == conclusion (TRUE). A "TRUE" conclusion for the "0R1' 

logic function means that one or more facts are 11 TRUE 11 • 

Consider: A+B+C+D = conclusion (TRUE). A "TRUE 11 conclusion for the 11SUM11 logic 
function means that an odd number (either 1 or 3 in this case) of facts are "TRUE". 

Consider : AvBvCvD = conclusion (FALSE). A "FALSE11 conclusion for the 11 EOR11 

logic function means that more than one fact or none of the facts are "TRUE". 

It can be seen from the above examples that logic operations are basic tools for making 
decisions and evaluations about a group of facts without really knowing the details and/ or 
validity of each fact. The CONCLUSION represents a specific decision or evaluation. In 
the examples above, the statement and validity of each fact was noted for reference only. 
The CONCLUSION is also of a more general nature and it is not usually possible to use 
CONCLUSION information to derive information about a specific fact. Note the "FALSE" 
conclusion for the "AND" operation on the four facts. Noting the conclusion, we know that 
not all facts are "TRUE". However, it is not possible to tell from this conclusion exactly 
which facts are "TRUE" and which are "FALSE". The same holds true for all the other 
logic operations . 

2. 8 BINARY NUMBER "FACT" REPRESENTATION 

The BINARY number system is a number system with 2 as the number base. A 
BINARY NUMBER can be only a 11 111 or a "0". Since a computer only "sees" a 111 11 or a 
11011 , we will employ these two numbers to represent the validity of facts as follows: 

111" = "TRUE 11 

110" = "FALSE" 

The above numerical representations will be used wherever possible. 
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2. 9 LOGIC PARENTHESES AND BRACKETS 

Logic PARENTHESES and BRACKETS are very important because they keep the logic 
I 

statement clear when an expression can be interpreted more than one way. Consider the 
following example: 

AvB·C 

What does the above expression mean? Is it the quantity A "OR" B, "AND" C? Or is 
it A "OR" the quantity B "AND" C? These two expressions are not logically equivalent, as 
can be seen from the "truth table" method of proof in chapter 4. (The reader can verify 
this.) In order to clear up this confusion, we must use PARENTHESES to represent the 
two different expressions respectively: 

(1) (AvB)· C 

(2) Av(B· C) 

It is very important that parentheses be used when confusion can occur. In some 
cases, where the Associative Law (see chapter 3) holds for certain expressions, the par­
entheses may be left out. Example: (AvB)v ( (CvD)vE] = AvBvCvDvE. If more than one 
set of parentheses is needed in the same expression, then various forms of different 
brackets may be used such as: tr[ ] "or" { }" or 11

() "· Consider the following example: 

(A+B)+C = { ( (A· B)v(A· B)]-C} v { (A· B)v(A· B) · C} 

When simplifying expressions such as above, the ASSOCIATIVE LAWS will be used 
(chapter 3) to clear the parentheses. 
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3. FUNDAMENTAL LOGIC THEOREMS, LAWS, AND IDENTITIES 

The fundamental theorems, laws, and identities presented here are the necessary 
"tools11 for all logical manipulations and problem work. Each group is classified together 
with a brief explanation followed by a tabulated presentation. These logical equalities 
should be referred to when necessary and will be referred to in this text by their corres­
ponding identification numbers on the right. 

3.1 DEMORGAN'S THEOREMS 

The two expressions called "DeMorgan's Theorems" are the most important laws for 
computer logic. They define the relationship between the "AND" and "OR" logic operations. 

The fi.rst theorem defines the negative of a group of "AND" logic facts to be equal to 
the corresponding group of "OR" of the negatives of these respective logic facts. 

The second theorem defines the negative of a group of "OR" logic facts to be equal to 
the corresponding group of "AND" of the negatives of these respective logic facts. 

Specific examples for two facts A, Bare: 

- -A·B = AvB 

~ = A•B 

For 3 facts A, B, C we have: 

A· B •C = AvBvC 

AvBvC = A· B •C 

For 4 facts A, B, C, D we have: 

A· B .c -D = AvBv~vn 

AvBvCvD = A· ff.(!.]) 

3. 2 COMMUTATIVE LAWS 

(DM #1) 

(DM # 2) 

(DM #3) 

(DM #4) 

(DM #5) 

(DM #6) 

The commutative laws refer to the order of the logic facts. To commute logic facts 
means to change the order of either two or more facts. Note that equality holds for the 
four logic operators discussed in thi s book. 

Specific examples for 2 facts A, B are: 

A·B = B·A 

AvB = BvA 

A+B = B+A 

AvB = BvA 

For 3 facts A, B, C we have: 

A-B·C = A·C·B = B·A·C = B·Clt\ = C·A·B = C·B·A 

AvBvC = AvCvB = BvAvC = BvCvA = CvAvB = CvBvA 

A+B+C = A+C+B = B+A+C = B+C+A = C+A+B = C+B+A 

AvBvC = AvCvB = BvAvC = BvCvA = CvAvB = CvBvA 

(CL #1) 

(CL #2) 

(CL #3) 

(CL #4) 

(CL #5) 

(CL #6) 

(CL #7) 

(CL #8) 
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3. 3 ASSOCIATIVE LAWS 

The associative laws refer to the grouping of logic facts. The use of logical paren­
theses, brackets, and the overhead bar are very important in order to show the grouping 
of logic facts. As there is only one way to group two facts, we must start with three. 
Note that three facts can be grouped by two's, or as a single group of three. Note the 
inequality ( i) for the "EOR" operator (V). 

Specific examples for 3 facts A, B, C are: 

A· (B · C) = (A· B) · C = A· B · C 

Av(BvC) == (AvB)vC = AvBvC 

A+(B+C) = (A+B)+C = A+B+C 

Av(BvC) = (AvB)vC f. AvBvC 

3.4 DISTRIBUTIVE LAWS 

(AL #1) 

(AL #2) 

(AL #3) 

(AL #4) 

The distributive laws define "logical multiplication. 11 This term is used because of 
the analogy to numerical multiplication. Consider the following numerical example: 

2x(3+4) = (2x3)+(2x4) 

Note the position of the "times" sign (x) and the "plus" sign on both sides of the 
equality. In "logical multiplication" we replace the "times" sign and "plus" sign with a 
logic operator. However, the respective positions of the logic operators must be the same 
as the corresponding "times" and "plus" signs. (Note: numerical "plus" and logic "plus" 
signs should not be confused.) The quantity to the right of the "equal" sign is the distribut­
ed expression, while the quantity to the left is the "factored" expression. We need at least 
three logic facts in order to form a 11distributed" expression. The twelve examples shown 
for the three logic facts A, B, C show all the possibilities with the four logic operators 
used in this book. Note that only the first four examples are an equality. The distributive 
law does not hold for the other eight expressions, hence the inequalities ( =I- ). 

Specific examples for 3 facts A, B, Care: 

A· (BvC) = (A· B)v(A· C) 

A· (B+C) = (A· B)+(A · C) 

A· (BvC) = (A· B)v(A · C) 

Av(B· C) = (AvB) · (AvC) 

Av(B+C) /: (AvB)+(AvC) 

Av(BvC) / (AvB)v(AvC) 

A+(B· C) f (A+B)· (A+C) 

A+(BvC) '/: (A+B)v(A+C) 

A+(BvC) f (A+B)v(A+C) 

Av(B· C) f (AVB)· (AVC) 

Av(BvC) ,= (AvB)v(AvC) 

Av(B+C) /= (AvB)+(AvC) 

(DL #1) 

{DL #2) 

(DL #3) 

(DL #4) 

(DL #5) 

(DL #6) 

(DL # 7) 

(DL #8) 

(DL #9) 

(DL #10) 

(DL # 11) 

(DL # 12) 
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3. 5 FUNDAMENTAL IDENTITIES 

The fundamental identities define the relationship between two logic quantities. 
Either or both of the quantities may be a logic fact (indicated by the letter A), its converse 
("not A 11 , or A), the number "l", or the number "011 • Note that the "plus11 {+) and 
"triangle" (v) operators are the same for two logic quantitie s. The interrelationship 
be tween logic facts and binary numbers is shown here. 

A'A = A {FI *1) A+A = 0 (FI #33) 
A·A = 0 {FI # 2) A+A = 1 {FI #34) -
A· 1 = A (FI # 3) A+l = A (FI #35) 
A-0 = 0 (FI # 4) A+0 = A (FI #36) 
A·A = 0 (FI # 5) A+A = 1 (FI #37) 
A· A = A (FI # 6) - - (FI #38) A+A = 0 - -

(FI # 7) A+l = A (FI #39) A-1 = A 
A·O = 0 {FI # 8) A+0 = A (FI # 40) 
l ' A = A {FI # 9) l+A = A (FI #41) 
l·A = A {FI #10) l+A = A (FI #42) 
l· l = 1 {FI # 11) l +l = 0 (FI 1 43) 
l· 0 = 0 {FI 1 12) l +0 = 1 {FI #44) 
O·A = 0 {FI #13) 0+A = A {FI #45) - -0·A = 0 {FI 1 14) 0+A = A {FI 146) 
0· l = 0 (FUH S) 0+l = 1 (FI #4 7) 
o· o = o {FI 1 16) 0+0 = 0 (FI #48) 

AvA = A {FI #17) AvA = 0 {FI #-49) 
AvA = 1 {FI #18) AvA = 1 {FI #- 50) 
Avl = 1 {FI #- 19) Avl = A {FI #- 51) 
Av0 = A {FI #- 20) Av0 = A {FI #- 52) 
AvA = 1 {FI # 21) AvA = 1 {FI #53) 
AvA == A {FI #22) AvA. = 0 (FI # 54) 
Avl = 1 {FI # 23) Avl = A (FI # 55) 
Av0 = A (FI # 24) AvO = A (FI # 56) 
lvA = 1 (FI # 25) lvA = A {Fl # 57) 
lvA = 1 (FI # 26) lvA = A (FI # 58) 
lvl = 1 (FI # 27) lvl = 0 (FI #59) 
lv0 = 1 (Fl # 28) lv0 = 1 (FI # 60) 
0vA = A (FI # 29) 0vA = A (FI # 61) 
0vA = A (FI #30) 0vA = A (Fl # 62) 
0vl = 1 (FI #31) 0vl = 1 {FI # 63) 
0v0 = 0 {FI #32) ovo = 0 (FI # 64) 
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3. 6 NEGATION AND DOUBLE NEGATION 

Simple negation employs the use of the overhead "bar" to denote "not A" when placed 
over logic fact A. This quantity (A) is called the "negative of A", the "converse of A", or 
the "invert of A". 

Double negation means to invert A twice, or to invert the negative of A (A). However, 
if we invert a "negative", it returns to a "positive". Thus, the law of double negation is 
written as follows: 

A = A (DN #1) 

3. 7 SPECIAL IDENTITIES 

Logic identities other than those in the preceding categories are listed here. 

The first is the equality of the "eor" and "sum'' for two quantities. This is expressed 
as follows: 

A+B = AvB 

For 3 quantities A, B, C we must use parentheses as follows: 

A+B+C = Av(BvC) = (AvB)vC 

For 4 quantities A, B, C, D we must use parentheses as follows: 

A+B+C+D = (AvB)v(CvD) 

For 5 quantities A, B, C, D, Ewe must use parentheses as follows : 

A+B+C+D+E = ( (AvB)v(CvD)] vE = (AvB)v ( (CvD)vE] = 

(CvD)v [ (AvB)vE ] 

3. 8 ADDITION IDENTITIES 

The most important addition identities for 2 quantities {A, B) are: 

S = A+B = (A· B)v(A· B) 

S = A+B = (AvB)· (AvB) 

(SI #1) 

(SI #2) 

(SI #3) 

(SI #4) 

(AI #1) 

(AI #2) 

These expressions will be used throughout the book to expand and simplify logic 
expressions. 

The following addition identities are entered in this section for reference only. They 
will be further discussed in chapter 10. Note how complicated the expressions become as 
the number of logic quantities increases. 

"S" means "SUM" 

11C1
11 means "CARRY-ONE" 

"C " means "CARRY-TWO" 
2 

The above notation will be explained later. 

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

3. 8 ADDITION IDENTITIES (Continued) 

For 2 quantities A, B: 

S = A+B = AvB 

S = (A· B)v(A· B) 

S = (AvB)" (AvB) 

c1 = A-B 

For 3 quantities A, B, C: 

S = A+B+C 

S = (A· B ·C)v(A· B ·C)v(A· B ·C)v(A· B •C) 

c1 = (A· B)v(A· C)v(B •C) 

For 4 quantities A, B , C, D: 

S = A+B+C+D 
- - - -

S = (A· B ·C ·D)v(A· B ·C ·D)v(A· B ·C ·D)v(A· B ·C ·D)v 

(A· B ·C ·D)v(A· B ·C ·D)v(A· B ·c ·D)v(A· B ·c ·D) 
- - - - -c1 = (A· B ·D)v(A· C ·D)v(A· C ·D)v(A· B ·D)v(A· B ·C)v 

(A· B ·D)v(A· C ·D) 

c2 = A·B·C·D 

For 5 quantities A, B, C, D, E: 

S = A+B+C+D+E 

S = (A· B ·C ·D·E)v(A· B ·C ·D·E)v(A· B ·C ·D·E)v 

(A· B ·C ·D ·E)v(A· B ·C •D •E)v(A· B -C •D ·E)v 
- - - - - -

(A· B ·C -D ·E)v(A· B ·C -D-E)v(A· B -C ·D ·E)v 
- - ----

(A· B-C -D·E)v(A· B ·C ,D .E)v(A. B -C-D-E)v 
- - - - - - --

(A· B ·C ·D ·E)v(A· B -C ,D ,E)v(A· B -C -D -E)v 
- ---(A·B-C-D-E) 

C = (A· B ·C ·D)v(A· C ·D ·E)v(A· C ·D ·E)v(A· B ·C ·E)v 
1 - - -

(A· B ·C ·D)v(A· B ·C ·D)v(A· B ·D •E)v(A· B ·C ,D)v 
- - -

(A· B ·C •E)v(A· C ·D ·E)v (A· C ·D ·E)v(A· B ·C ·D)v 

(A- B-C ·E) 
C = (A- B ·C ·D)v(A· B ·C ·E)v(A· B ·D·E)v(A- C ·D ·E)v 

2 
(B·C ·D·E) 

(AI #3) 

(AI #4) 

(Al # 5) 

(AI # 6) 

(Al #-7) 

(AI #8) 

(AI #9) 

(AI 4#10) 

(AI # 11) 

(Al #12) 

(Al #13) 

(AI 4#14) 

(AI # 15) 

(Al #16) 

(AI #17) 

11 
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4. TRUTH TABLES 

The truth table is a tabular representation of a logic expression and facts which 
indicates all possibilities of "TRUE" and 11FAISE11 • The 111 11 will be used to denote the 
"TRUE" possibility and the "0" will denote the "FALSE" possibility. The relationship 
between 11TRUE11 and "FALSE" logical facts has now become more complex. Now the 
fact A is undefined as to whether it is "TRUE" or "FAI..SE'' and may be either. A can 
also be "TRUE'' if "A" is "FAI..SE". The relationship that does hold is that no matter 
whether A is assumed to be "TRUE" or "FALSE", A must always be assumed the opposite. 

To set up a table, we must count the number of logic FACTS present (that is, A, B, 
C, D, E, etc.}. If there are 3 facts present, then we must calculate 23 . Since 23 = 8, 
we will have 8 possibilities, half of which are 11 111 and half of which are "0". For the 
first fact, the possibilities are divided up: 4 110 1s 11 and 4 "l's". For the second fact, the 
possibilities are alternately divided up: 2-2-2-2. The third fact has alternate "l's" and 
"O's". 

As examples, truth tables will be used to prove some of the identities in chapter 3. 

4. 1 LOGIC OPERA TOR TRUTH TABLE REPRESENTATIONS 

Truth table representations are shown for two facts A, Band three facts A, B, C for 
the four logic operators ( · , v, + , v}. In addition, the "negation" truth tables are shown 
for one fact A, two facts A, B, and three facts A, B, C. 

The representations for 2 quantities are as follows: 

A B A·B AvB A+B AvB X B 

0 0 0 0 0 0 1 1 

0 1 0 1 1 1 1 0 

1 0 0 1 1 1 0 1 

1 1 1 1 0 0 0 0 

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

13 

4.1 LOGIC OPERATOR TRUTH TABLE REPRESENTATIONS {Continued) 

For 3 quantities we have: 

- - -A B C A·B•C AvBvC A+B+C (AvB)vC Av(BvC) AvBvC A B C 

0 0 0 0 0 0 0 0 0 1 1 1 

0 0 1 0 1 1 1 1 1 1 1 0 

0 1 0 0 1 1 1 1 1 1 0 1 

0 1 1 0 1 0 0 0 0 1 0 0 

1 0 0 0 1 1 1 l 1 0 1 1 

1 0 1 0 1 0 0 0 0 0 1 0 

1 1 0 0 1 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1 0 0 0 0 

Truth tables for a greater number of facts (A, B, C, D, E ......... ) can be made up 
from the definitions in chapter 2. 

4. 2 PROOF OF DEMORGAN'S THEOREMS BY TRUTH TABLES 

The proofs of DM #1, DM #2, DM #3, and DM 14 are illustrated by use of the following 
truth tables. Note that the "1" and "0" sequence for the 11truth11 columns which represent 
the quantity left of the 1'equal11 sign match exactly the 11 truth" column to the right of the 
"equal" sign. Two or more quantities are logically equal if their "truth" columns match 
exactly. 

Consider the following: 

A·B = AvB (DM #1) 

- - -- - -A B A B A·B A-B AvB 

0 0 1 1 0 1 1 

0 1 1 0 0 1 l 

1 0 0 1 0 1 1 

1 1 0 0 1 0 0 
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4. 2 PROOF OF DEMORGAN'S THEOREMS BY TRUTH TABLES (Continued) 

- --AvB = A·B (DM #2) 

- - - - -
A B A B AvB AvB A·B -
0 0 1 1 0 1 1 

0 1 1 0 1 0 0 

1 0 0 1 1 0 0 

1 1 0 0 1 0 0 

A· B ·C = AvBvC (DM #3) 

A B C A B C A·B·C A-B·C AvBvC 

0 0 0 1 1 1 0 1 1 

0 0 1 1 1 0 0 1 1 

0 1 0 1 0 1 0 1 1 

0 1 1 1 0 0 0 1 1 

1 0 0 0 1 1 0 1 1 

1 0 1 0 1 0 0 1 1 

1 1 0 0 0 1 0 1 1 

1 1 1 0 0 0 1 0 0 

AvBvC = A· B· C (DM #4) 

- - A·B•c A B C A B C AvBvC AvBvC 

0 0 0 1 1 1 0 1 1 

0 0 1 1 1 0 1 0 0 

0 1 0 1 0 1 1 0 0 

0 1 1 1 0 0 1 0 0 

1 0 0 0 1 1 1 0 0 

1 0 1 0 1 0 1 0 0 

1 1 0 0 0 1 1 0 0 

1 1 1 0 0 0 1 0 0 
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4. 3 PROOF OF DISTRIBUTIVE LAWS BY TRUTH TABLES 

As examples, only 'DL #1 and DL #7 will be represented by truth tables. Note that 
DL 1 7 is an inequality and that the 11truth" columns are different. 

A· (BvC) = (A· B)v(A· C) (DL #1) 

A B C (BvC) (A· B) (A· C) A· (BvC) (A· B)v(A· C) 

0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 

0 1 1 1 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 1 1 0 1 1 1 

1 1 0 1 1 0 1 1 

1 1 1 1 1 1 1 1 

Since the last two "truth" columns match, the above distribution expression is a 
proven equality. 

Now consider the following inequality: 

A+(B• C) I (A+B)· (A+C) (DL # 7) 

A B C (B· C) (A+B) (A+C) A+(B· C) (A+B)' (A+C) 

0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 0 

0 1 1 1 1 1 1 1 

1 0 0 0 1 1 1 1 

1 0 1 0 1 0 1 0 

1 1 0 0 0 1 1 0 

1 1 1 1 0 0 0 0 

15 

Since the last two 11 trutb" columns do not match, the expressions are not equal and the 
distributive law for this expression does not hold. Note that only the first four distributive 
expressions (DL #1, DL # 2, DL #3, and DL #4) are equalities. 
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4.4 PROOF OF FUNDAMENTAL IDE TITIES BY TRUTH TABLES 

The truth table proofs of fundamental identities are very simple. A few examples are 
shown in order to illustrate this fact. 

A·A = A (Fl # 1) A· A = 0 (Fl # 2) 

A A A·A A A A·A 

0 0 0 0 1 0 

1 1 1 1 0 0 

A- 1 = A (FI #3) A· 0 = 0 (FI #4) 

A 1 A-1 A 0 A-0 

0 1 0 0 0 0 

1 1 1 1 0 0 

AvA = A (FI # 17) AvA = 1 (FUH S) 

A A AvA A A AvA 

0 0 0 0 1 1 

1 1 1 1 0 1 

Avl = 1 (FI # 19) AvO = A (FI # 20) 

A 1 Avl A 0 1Av0 

0 1 1 0 0 0 

1 1 1 1 0 1 

A+A = 0 (FI #33} A+A = 1 (Fl #34) 

A A A+A A A A+A 

0 0 0 0 1 1 

1 1 0 1 0 1 
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4. 4 PROOF OF FUNDAMENTAL IDENTITIES BY TRUTH TABLES (Continued) 

A+l = A (FI # 35) A+0 = A (FI #36) 

A A 1 A+l A 0 A+-0 

0 1 1 1 0 0 0 

1 0 1 0 1 0 1 

ATA = 0 (FI # 49) ATl = A (FI # 51) 

A A AvA A A 1 Avl 

0 0 0 0 1 1 1 

1 1 0 1 0 1 0 

4. 5 PROOF OF ADDITION IDENTITIES BY TRUTH TABLES 

The proofs of the two important addition identities Al fH and Al # 2 are shown here. 

A+B = (A· B)v(A· B) (AI # 1) 

- B (A· B) (A· B) A+B (A· B)v(A • B) A B A 

0 0 1 1 0 0 0 0 

0 1 1 0 0 1 1 1 

1 0 0 1 1 0 1 1 

1 1 0 0 0 0 0 0 

A+B = (AvB)· (AvB) (Al # 2) 

- - (AvB) (AvB) A+B (AvB)· (AvB) A B A B 

0 0 l 1 0 1 0 0 

0 l 1 0 1 1 1 1 

1 0 0 1 1 1 1 1 

1 1 0 0 1 0 0 0 

wigfi
Stolen 2 Line Transparent
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5. ELECTRONIC COMPUTER LOGIC OTATION 

Up to this point, we have been discussing only pure logic operation on facts and con­
clusions . We will now relate this logic to electronic gate circuits. The 5 types of gates 
discussed here are: "AND", "OR", "SUM", 11EOR11 , and "INVERTER". 

Inputs to these gates are supplied by electronic FLIP-FLOP circuits (see chapter 6). 
The following table relates the written logic sy111bol with the electronic gate symbols. 
This table should be referred to when necessary. 

WRITTE ELECTRONIC LOGIC 
LOGIC GATE OPERATION 

SYMBOL SYMBOL DEFINITION 

. IIDQT" D "AND" 

v "WEDGE" t> "OR" 

+ "PLUS11 D "SUM" 

• "TRIANGLEH l> "EXCLUSIVE OR" 

- 0 "BAR" "INVERT" ("NOT") 

A 0 A·B A-B A "AND" B 
B 

A t> AvB AvB A "OR" B 
B 

A D A+B A+B A "SUM" B 
B 

A 

~ AvB AvB A "EOR" B 
B 

A A 0 A "NOT" A 

B B 0 B "NOT" B 

A =0-A"B 
B 

A·B "NOT" ( A "AND" B) 

AvB : ==t>e-- AvB "NOT" ( A "OR II B) 
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5. 1 EXAMPLES OF ELECTRONIC COMPUTER LOGIC EXPRESSIONS 

Consider the expression (A· B)v(A· B). The "gate" representation is as follows: 

A·B 
(A· B)v(A· B) (AI #1) 

Now consider the expression (AvB)· (AvB). The "gate" representation is as follows: 

AvB 
(AvB)· (AvB) 

AvB 

The complicated expression AI #8 is represented as follows: 

A 

B 
C 

A 

B 
C 

A 

B 
C 

A·B·C 

A·B•C 

A·B-C 

(A· B· C)v(A·B· C}v 
(A· B· C)v(A · B· C} 

(AI #2} 

(AI #8) 
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6. 0 THE BINARY NUMBER SYSTEM 

This simple number system must be understood before the value of the binary digital 
computer can be appreciated. In this system, we have only 11 l 's'' and "0 1s 11 • The logical 
equivalents are: 

1'1 1' = TRUE 

"0" = FALSE 

Now let us illustrate binary counting. The binary column farthest to the right is called 
the "l's" colwnn. The next one over to the left is the "2's" column, then the "4's'' column, 
"S's" column, etc. The column heading is used to identify the binary numbers in terms of 
our own common decimal system (1, 2, 3, 4, 5, 6, 7, 8, 9, 0). Starting from the "1' s" 
column, the column heading numbers are doubled as we go to the adjoining left column. In 
converting a binary number back to our own system, we note the column headings under 
which there is a binary 11 111 • If there is a binary "1" , we add the column heading number; 
if there is a binary 0, we ignore the column heading number. Note also that powers of 2 
are : 2° = l; 21 = 2; 22 = 4; 23 = 8; 24 = 16; 26 = 32; 26 = 64; etc . The column headings may 
also be shown as powers of 2. Starting from the right (the 2° column), the "power of 2" 
column heading will always be a power one less than the number of column positions over 
from the right. For instance, the 6th column over would be the 25 column (25 = 2x2x2x2x2 
= 32); the 10th column over would b the 29 column (29 = 2x2x2x2x2x2x2x2x2 = 512). 

The table below shows a 11count" from 1 to 15, using the binary system. Note that a 
fifth column (24 = 16) would be needed to represent the number 16. 

BINARY COLUMN HEADING BINARY DECIMAL CONVERSION FROM 
"8" 11411 "2" "l" NUMBER EQUIVALENT BINARY TO 

23 22 21 20 DECIMAL 

0 0 0 0 0 0 0+0+0+0 

0 0 0 1 1 1 0+0+0+l 

0 0 1 0 10 2 0+0+2+0 

0 0 1 1 11 3 0+0+2+1 

0 1 0 0 100 4 0+4+0+0 

0 1 0 1 101 5 0+4+0+1 

0 1 1 0 110 6 0+4+2+0 

0 1 1 1 111 7 0+4+2+1 

1 0 0 0 1000 8 8+0+0+0 

1 0 0 1 1001 9 8+0+0+1 

1 0 1 0 1010 10 8+0+2+0 

1 0 1 1 1011 11 8+0+2+1 

1 1 0 0 1100 12 8+4+0+0 

1 1 0 1 1101 13 8+4+0+1 

1 1 1 0 1110 14 8+4+2+0 

1 1 1 1 1111 15 8+4+2+1 
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6. 1 TRUTH TABLES AND TH E BINARY COUNT 

Note that for one fact A , two facts (A, B) , three facts (A, B, C) , and 4 facts (A, B , C, 
D) , that the "truth table" representations represent nothing more than a binary count as 
shown below: 

rn 
A B 

0 0 

0 1 

A B C 

0 0 0 

0 0 1 

1 0 0 1 0 

1 1 0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

For one fact A, we count !:!E from "0" to 
11 111 • For 2 facts (A, B), we count E.E, from 
"00" to 1111 11 • For 3 facts (A , B, C) we 
count .!:!.E from "000" to "111" . For 4 facts 
(A, B , C, D) we cou nt.!:!_E from "0000" to 
"1111". Note that for the invert ("not") of 
A, B, C, and D, the binary count goes back­
wards, starting from 111 11 , "11", 11 111 11 , and 
"1111" and ending up at "0", 1100", "00011 , 

and "0000", respectively . This can be seen 
by interchanging the binary "l's" and "O's" 
in the above "truth" tables . 

6. 2 BINARY ADDITION 

A B C D 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

It is possible to perform addition with binary numbers . The rules are as follows: 

Examples are : 

O+O = O 

0 + 1 == 1 

1 + 0 == 1 

1 + 1 == 0, carry 1 

1 1 - "carries''-----~ 11 +-- "carries" 
a . 1001 

+1101 
10110 

b. 110 
+111 
1101 

11111 
c . 11101 

+ 1011 
101000 
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6. 2 BINARY ADDITION (Continued) 

a. 

Decimal system equivalents: 

9 
+13 

22 

6. 3 BINARY SUBTRACTION 

b. 6 
+7 
13 

We can perform binary subtraction by the following rules: 

Examples are: 

0 0 ..._ "borrows" 
a. .to1.to 

-1101 
1001 

Decimal system equivalents: 

a. 22 
-13 

9 

6. 4 BINARY MULTIPLICATION 

0 - 0 = 0 

0 - 1 = 1, borrow 1 

1- 0 = 1 

1-1 = 0 

00 - 11borrows" 
b. .t.to1 

-111 
110 

b. 13 
- 7 

6 

c. 

c. 

c. 

29 
+11 

40 

01011 
.tf1.tf1f10 
- 1011 

11101 

40 
-11 

29 

Binary multiplication is performed like regular decimal number multiplication, except 
that it simplifies down greatly. In the examples below, the top number (above the line) is 
the MULTIPLICA D and the bottom number is the MULTIPLIER. Starting with the number 
farthest right in the multiplier, we note whether it is a "0'' or 11111 • If it is 11011 , we write 
nothing (or "0") and proceed to the next adjacent MULTIPLIER number to the left. If it is 
a 1111', then we copy down the MULTIPLICAND exactly as is and be sure that the last 
MULTIPLICAND digit to the right and the MULTIPLIER digit being used line up in the same 
column. Repeat for each MULTIPLIER digit. 

Consider the following examples: 

a. 10110 b. 1101 C. 101000 
X 1101 X 111 X 1011 

10110 1101 101000 
10110 1101 101000 

10110 1101 101000 
100011110 1011011 110111000 
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6. 4 BINARY MULTIPLICATION (Continued) 

a. 

Decimal system equivalents are: 

22 

~ 
6.6 

22 
286 

b. 13 
X 7 

91 

c. 40 
xll 

40 
40 
440 

23 

As can be seen from the above examples, once all the binary numbers are properly 
lined up, the columns need only be added up to give the answer. 

The general rules of binary multiplication are: 

MULTIPLICAND 

x MULTIPLIER 

PRODUCT 

6. 5 BINARY DIVISION 

0x0 = 0 

0xl = 0 

lx0 = 0 

1 X 1 = 1 

(MULTIPLICAND x MULTIPLIER = PRODUCT) 

Binary division is very similar to ordinary decimal division, except that it is much 
simpler. The REMAINDER must be closely observed. Starting with the left binary 
DIVIDEND digit, we continue over to the right until we have enough binary numbers 
(reach enough "places") to start the division process to obtain a QUOTIENT (or answer). 
If the division can continue into a fractional answer, we use a binary fractional point, or 
BINARY POINT (. ) , which is the same as the decimal fractional point (DECIMAL POINT) 
to denote the binary fractional. 

When we start the division process, we place a "1" above the DIVIDEND binary digit 
farthest to the right which yields a number large enough to start the division process. 
Then we subtract the DIVISOR, being sure that the last binary DIVISOR digit is in the same 
column as the "1" entered in the QUOTIENT (see examples). Then we "bring down" and 
11tack on" to the REMAINDER the next binary digit from the DIVIDEND and see if we can 
subtract the DIVISOR from the new REMAINDER. If we can not, then we write a "0" in the 
next QUOTIENT digit position, "bring down" and "tack on 11 to the REMAINDER the next 
binary DIVIDEND digit. Repeat this process until subtraction of DIVISOR from REMAINDER 
can be performed. Then write a 11111 in the next QUOTIENT binary digit position, subtract, 
and "bring down'' and ''tack on" the next DIVIDEND binary digit. Continue this process 
until division is complete. 

Consider the following examples: 
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6. 5 BINARY DIVISION (Continued} 

QUOTIENT 
DIVISOR ) DIVIDEND (DIVIDEND ..,.. DIVISOR = QUOTIENT) 

11 

a . 1101) 100111 "BRING DOWN" 
- 1101 / REMAINDERS 

110~ , I - 1101 
0 

111 
c. 10001) 1110111 

10001,__~ 
RE - ~ 11001 ''~RING DOWNS" 
MAINDERS 10001 ,r ~r 

01 
0 

Decimal system equivalents are: 

3 
a . 13) 39 b. 

39 
0 

6. 6 BINARY FRACTIONAIB 

11. 001001. ...... . 
b. 111} 10110. 

- 111_"" 
~-~ 1000 "BRING DOWNS" 111-!J 'T"---- 1000 

111 -------,---- 1000 

3.14 ... ... 
7) 22 

21 
10 

7 
30 

- 28 
2 

- 111 
l 

c . 
7 

17) 119 
119 

0 

The binary "FRACTIONAL11 is similar to the "DECIMAL" fractional representation of 
our system. Consider the common 1T = 3 . 1416. The first 11111 represents 1/10 or 10-1. 
The 114 11 represents 4/100 or 4 x 10-2. The second 11111 represents 1/1000 or 1 x 10-3, and 
the "6" represents 6/10,000 or 6 x 10-4 . As we can see, we have the "tenths","hundredths", 
"thousandths", and "ten-thousandths" positions to the right of the decimal point. Note that 
the first position to the right of the decimal represents 10- 1 (1/101 , or 1/10), the second 
position represents 10-2 (1/102 or 1/100), the third position represents 10-3 (1/103 or 
1/1000) , the fourth position represents 10-4 (1/104 or 1/10, 000), and so on. Generally, 
for 1'X" positions to the right of the decimal point, we have the 10-X position (1/loX or 
1/100 . ....... . 00 with "X" number of O's in the denominator) . 

The BINARY POINT denotes a BINARY FRACTIONAL and the only difference is that 
for ''X" positions to the right of the BINARY POINT, we have 2-X (instead of 10-X) . Then 
in terms of our decimal system, the first position to the right of the binary point represents 
z-1 (1/21 or 1/2), the second position represents 2-2 (1/22 or 1/4) , the third position 
represents z-3 (1/23 or 1/8), the fourth position represents 2-4 (1/24 or 1/16), and so on. 

However, since "2" is represented as "10" in the binary system, the first position to 
the right of the BINARY POINT becomes 10-l (1/101 or 1/10) , the second position becomes 
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6. 6 BINARY FRACTIONAI.S (Continued) 

10-2 (1/102 or 1/10~4 the third position becomes 10-3 (1/103 or 1/1000), the fourth 
position becomes 10 (1/104 or 1/10000), and so on. Note that in binary, 111011 = 2, 
11100" = 4, "1000" = 8, 111000011 = 16, and so on. The simplicity about a BINARY 
FRACTIONAL position is that it is either a 11111 or a 11011 and nothing else. In our own 
decimal system, we may have any one of the numbers 1, 2, 3, 4, 5, 6, 7, 8, or 9 in a 
given decimal fractional position. 

Consider the following decimal and binary fractional equivalents: 

DECIMAL BINARY 

a. Tf = 3. 14159 .... = 11.0010010001 ..... 

b. 1/2 = .5 ::: . 1 
* 

c. 1/3 = . 3 :f.31 •.••• = . 01010101'01' ........ 
* 

d. 1/10 = . 1 = . 000110011ooTI ..... 

e. e = 2. 71828 .... = 10.101101111110 ........ 

f. '12 = 1. 414 ..... = 1. 0110101. ....... 

*The overhead bracket (,.....,) means that the portion within it is repeated over and over 
indefinitely. 

25 

Note that some fractions are finite decimal fractionals, but infinite binary fractionals 
as in example (d). An INFINITE fractional is one where the division of two finite numbers 
goes on indefinitely and the numbers repeat in a given sequence. The overhead bracket 
( ,.....,) shows the repeating sequence. An ffiRA TIONAL fractional is a fractional which may 
be carried out indefinitely, but has no repeating sequence. The fractionals for 1/3 (in the 
binary and decimal systems) and 1/10 (in the binary system) are INFINITE, while the 
fractionals for "Tf 1', 11e 11 and 11 -.J'211 are IRRATIONAL {both 11 71"" and "e" are widely used 
mathematical constants either or both of which the reader may be familiar). 

6. 6. 1 CONVERSION FROM DECIMAL FRACTIONAI.S TO BINARY FRACTIONAI.S 

Consider a fractional already in the decimal form. To convert to the equivalent 
binary fractional, we proceed as follows: The whole number to the left of the decimal 
fractional point is converted into binary by the method described in 6. 0. We treat the 
portion to the right of the decimal fractional point separately and multiply that number by 
2. If the answer is less than 1, we write a 11 011 in a 11reference11 column to the left. If the 
number is greater than 1, we remove the 11111 and bring it over to the "reference" column 
and again multiply the rest of the fraction by 2 and repeat the process above. The multi­
plication by 2 can be carried out as far as one wishes. The "reference" column will then 
contain the BINARY FRACTIONAL to the right of the BINARY POINT. 

Consider again 3. 14159..... The 113" converts to binary "11". Now work with 
11 • 14159 11 as follows: 

wigfi
Stolen 2 Line Transparent
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6. 6. 1 CONVERSION FROM DECIMAL FRACTIONAI..S TO BINARY FRACTIONAI..S 
(Continued) 

REFERENCE 
COLUMN 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

0 

0 

1 

''FRACTIONAL'' 

. 14159 
X 2 

, 28318 
X 2 

. 56636 
X 2 

. 13272 
X 2 

. 26544 
X 2 

. 53088 
X 2 

. 06176 
X 2 

. 12352 
X 2 

. 24704 
X 2 

. 49408 
X 2 

. 98816 
X 2 

. 97632 
X 2 

. 95264 
X 2 

. 90528 
X 2 

. 81056 
X 2 

. 62112 
X 2 

. 24224 
X 2 

.48448 
X 2 

.96896 
X 2 

. 93792 

Now, using the 111111 for the whole number part, and the "reference" column for the 
fractional part, the decimal fractional 3. 14159 .. .. . converts to the binary fractional 
11.0010010000111111001 ....... . 

The decimal fractional 3.14159 .... has only 5 decimal fractional places. In order to 
maintain this accuracy in a binary fractional, we must have roughly 3. 2 times as many 
fractional places . Therefore, the binary equivalent for 3.14159 .... must have 5 x 3. 2, or 
16 binary fractional digits computed to maintain the accuracy of 5 decimal fractional digits 
(since 19 were computed, the accuracy is at least good as 5 decimal fractional digits) . 

A second method of conversion is merely to subtract 1/2, 1/4, 1/8, 1/16 . ... , etc., 
in decimal fractional form (. 5, . 25, .125, . 0625 . . ... ). Starting with . 5, we try to 
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6. 6. 1 CONVERSION FROM DECIMAL FRACTIONAI..S TO BlliARY FRACTIONAL5 
(Continued) 

subtract from the decimal fractional. If we~ subtract, a 11111 is entered for the first 
binary fractional digit. If we can not subtract, then a binary 11011 is entered. Subtract 

27 

and repeat again for . 25, and so on. This method is very tiresome because the decimal 
fractionals get very complicated as we calculate more and more binary fractionals. Also, 
we need a table of decimal fractionals for 1/2, 1/4, 1/8, 1/16, ... etc. Now let us 
convert 3. 14159. . . . . to a binary fractional by this method. Again, we convert the whole 
number 11311 to binary 111111 by the method in section 6. 0. Then we proceed to work on the 
decimal fractional as follows: 

.14159 

- .125 
. 01659 

- . 015625 
.000965 

- . 000489 

0, 
0, 
1, 

0, 
0, 
1, 

0, 
0, 
0, 
0, 
1, 

cannot subtract . 5 
cannot subtract . 25 
subtract . 125 

cannot subtract . 0625 
cannot subtract . 03125 
subtract . 015625 

cannot subtract . 0078125 
cannot subtract . 00390625 
cannot subtract . 001953125 
cannot subtract . 0009765625 
subtract .00048828125 

TABLE OF DECIMAL FRACTIONAL5 FOR 2-X 

X 2 -X 

1 .5 
2 . 25 
3 .125 
4 .0625 
5 . 03125 
6 • 015625 
7 .0078125 
8 . 00390625 
9 .001963125 

10 .0009765625 
11 .00048828125 
12 . 000244140625 
13 .0001220703125 
14 . 00006103515625 
15 .000030517578125 
16 .0000152587890625 
17 .00000762939453125 
18 .000003814697265625 
19 .0000019073486328125 
20 . 00000095367431640625 

e have calculated eleven places above and 3. 14159 ..... converts to 
11. 00100100001. . . . . . The reader can now see the difficulty in calculating out more 
places. 
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6. 6. 2 CONVERSION FROM BINARY FRA.CTIONALS TO DECIMAL FRACTIONALS 

To convert back from BINARY FRACTIONALS t:o decimal fractionals, we may refer 

t:o the 2-X table in 6. 6.1 and add up all the decimal fractional equivalents for the columns 
which have a binary fractional digit of 11111 • For instance, t:o convert .11, we add up 
. 5 + . 25 = . 75, which is relatively simple. Another example, . 1101 = . 5 + . 25 + . 0625 = 
. 8125. However, the longer binary fractionals are more complicated t:o handle in this 
manner. 

The second method is that of multiplying the binary fractional by "1010" in binary and 
moving over into a 11reference11 column all binary digits left of the binary point of the 
resulting answer, leaving the remaining binary fractional for further multiplication by 
binary "1010". We repeat this process until the desired number of decimal fractional 
digits are obtained. Note that each "decimal fractional digit" will appear in binary form 
in the reference column. A simple way to multiply by "1010" is to move the BINARY 
POINT over one place, then add to this the same number with the BINARY POINT moved 
over 3 places. 

Consider our calculation of 11. 0010010000111111001. We treat this as follows: 

''REFERENCE'' 
COLUMN 

1 

100 

1 

101 

1000 

1000 

._s. 0 l 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 

+.O O 1.0 0 1 0 0 0 0 11 1 1 1 1 0 0 1 ____,.. 

__J._2,.110101 0 0 1 1 1 0 1 1 1 0 1 

+.O 1 1.0 l O 1 0 0 1 1 1 0 1 1 1 0 1 ___.,. 

1 0 {,2.0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 

+. 0 0 1. 0 1 0 0 0 1 0 1 0 1 0 0 0 1 -___Jl· o o 1 o 1 1 o 1 o o 1 o 1 o 1 

+.l O 0.1 0 1 1 0 1 0 0 1 0 1 0 1 -
1 0 4-1- 1 1 0 0 0 0 1 1 1 0 1 0 0 1 

+.l 1 1.0 0 0 0 1 1 1 0 l O O 1 -
1 0 0 4.}..- 1 0 1 0 0 l 0 0 0 1 1 0 1 

+.1 1 0.1 0 0 1 0 0 0 1 1 0 1 ---
1 o o {~,. o 11 o 11 o o o o o 1 

Now observe that the "reference column" indicates 6 positions of the decimal fractional 
number and that these position numbers are in binary (1, 100, 1, 101, 1000, 1000). Now, 
we must convert these binary numbers t:o decimal numbers by the method in section 6. 0 t:o 
obtain 1, 4, 1, 5, 8, 8. The whole number to the left of the binary fractional point (11) 
converts to 3. Therefore, the converted binary fractional is 3.141588 or, rounding up the 
last 8, we have 3.14159. 

While the above method is not simple, the first method is much more difficult for long 
binary fractionals . 
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6. 7 BINARY FRACTIONS 

The binary fraction number, like our own decimal fraction number, has both a 
NUMERATOR and DENOMINATOR as shown below: 

FRACTION = NUMERATOR 
DENO MINA TOR 

However, both the NUMERATOR and DENO MINA TOR are expressed in BINARY 
instead of the decimal system. Consider the following examples: 

a. 11 
100 

b. 1 
11 

c. 11 
1000 

d. 1001 
10001 

e. 1 
10 

The decimal fraction number equivalents of the above are: 

a. 3/4 b. 1/3 c. 3/8 d. 9/17 e. 1/2 

The use of binary fraction numbers is not as common as the binary FRACTIONAL 
representation. In order to convert a binary FRACTION to a binary FRACTIONAL, 
simply divide out the NUMERATOR by the DENOMINATOR. 

6. 8 SQUARE ROOTS 

29 

The square root of a number is a second number which, when multiplied by itself, 
yields back the first number. For example, the square root of 4 is 2 because 2 x 2 = 4. 
The square root of 225 is 15 because 15 x 15 = 225. The above examples a·re relatively 
easy because the numbers are exact. However, except for numbers which are perfect 
"squares" (such as 1, 4, 9, 16, 25, 225, 1. 69, 5625, etc.) all other square roots are 
mRA TIONAL fractionals in both decimal and binary systems. The "RADICAL'' (. ...r-- ) 
is used to indicate that a square root must be extracted from a number. 11 V " is 
read: 11the square root of 2. " 

6. 8.1 EXTRACTING THE SQUARE ROOT 

If the number is a whole number, we. must divide all the digits into groups of "two" by 
use of the 1'spacer" mark ( ,.._ ) starting with the number at the extreme right. Any odd 
digit left alone by the grouping process must occur at the extreme left. A number consist­
ing of one or two digits need not be grouped. 

A fractional must be grouped in "twos" starting at the decimal point in which case an 
odd digit would be left at the extreme right. Zeros may be added on to carry out the oper­
ation further. A zero may be added on a lone digit at the extreme right in order to complete 
a grouping of 11two". Zeros may then be added on, two at a time, indefinitely. 

A whole number may be made into a fractional by placing a decimal point at the 
extreme right and by adding zeros in groups of "two'' (2 = 2. 001\00"00}. A fractional 
which contains a whole number must be grouped in "twos11 starting at the decimal point 
and proceeding to the right for the part to the right of the decimal point, and proceeding 
to the left for the part to the left of the decimal point (3,..97 ..... 86. 48A73.r.51). The same 
grouping rules apply to binary numbers. 

Consider the square root of 1521. We group this number in "twos1' as follows and 
insert a 11radical 11 over it: '1 15.,..21. To start the operation, we observe the group 
farthest to the left, which is 15. We then determine which number is the largest square 
less than 15. Considering the possibilities from 1 to 9, we have : 1 x 1 = ,!; 2 x 2 = _!; 
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6, 8.1 EXTRACTING THE SQUARE ROOT (Continued) 

3 x 3 = ~i 4 x 4 = 16; 5 x 5 = 25; 6 x 6 = 36; 7 x 7 =- 49; 8 x 8 = 64; 9 x 9 = 81. The pre­
ceding information indicates that~ is the number we want (!! is too large). We subtract 
9 from 15 and write {s: or 113", above the grouped "15" pair. The REMAINDER is 6 
and we "bring down" the next pair of numbers {21) . 

" L" LINE 

3 
✓ 15,..,.21 

9 

~ 

- SQUARE ROOT 

- REMAINDER 

To the left of the REMAINDER, we draw an ''L" shaped line ("L" LINE) with a long 
bottom line as shown above. Then OOUBLE the number in the "SQUARE ROOT" (on top 
of the radical) and enter it above the bottom of the 11 L 11 line and leave room to write in 
another digit after it. The next digit on the "L" line can be anything from O through 9. 
That means the "L" line number can be any number from 60 to 69 . Now observe again 
that the REMAINDER is 621. Also, the second number on the "L" line will be the same 
as the next digit in the "SQUARE ROOT" which appears above the next pair of numbers to 
the right (21). Now we have to determine the correct number between 60 and 69, and the 
digit between O and 9 whose product is equal to or less than the REMAINDER 621. In 
order to estimate the number, we will use 60. Now 60 x ? = 621. The number 9 looks 
possible because 60 x 9 = 540, which is less than 621. For the final test, we must place 
this "9" after the "6" and multiply again to be sure that the product is equal to or less 
than 621. Testing, we have 69 x 9 = 621, which is exact. This shows that 1521 is a 
perfect square and that 39 is its square root. Observe below: 

"L" LIN.;.;Eaa;.._ _____ 6_9 _ _. 6 21 - REMAINDER 
6 21 

0 

Now, consider a more difficult example--a number whose square root is ffiRATIONAL. 
The number 11 2 11 is a good example. In this example, we will calculate the ~ to 5 
places. First of aU, since 2 is a whole number, we will add a decimal point to the right 
and add 5 pairs of zeros and a radical. The calculation is done as follows: 

1. 4 1 4 2 1 
'1 2. oo"ooAoo,..,.oo"oo 

1 
"L" LINE----~ 00 ------------,. 

96 
"L" LINE --- • ~ 00 ---- ---- R~MAINDERS 

"L" LINE 

11 £.• LINE 

"L" LINE ----

2824 

28282 

282841 

2 81 
1 19 00 _ _ ____ __, 

1 12 96 / 
6 04 00 • 
5 65 64 _____ _, 38 36 00 -------.J 

28 28 41 
10 07 59 _________ ..... 
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6. 8. 1 EXTRACTING THE SQUARE ROOT (Continued) 

Note that with the exception of the first "SQUARE ROOT" digit to the left, the last 
digits of the "L" line numbers match the "SQUARE ROOT" digits exactly in the corres­
ponding positions. The number 11111 (1 x 1 = 1) proved to be the largest square less than 
2 and was subtracted from it, leaving a REMAJNDER of 1. The square root of 1111' (also 1) 
was entered above the "2". Note that since 2 is the only number left of the decimal point, 
it is grouped alone . The decimal point is placed in its respective position above the 
radical above the first decimal point. We then ''bring down" two O's to complete the first 
REMAINDER of 100. We then double 1 to form the first digit of the first "L" line number. 

ow we need a 20-29 and 1-9 number whose product is equal to or less than 100. In testing, 
we find that 20 x 0 = 0; 21 x 1 = 21; 22 x 2 = 44; 23 x 3 = 69; 24 x 4 = 96; 25 x 5 = 125. 
Since 96 is the largest number less than 100, we then subtract it from 100, forming part 
of the second REMAINDER. We complete the first "L'' line number (24) and enter in the 
other "4" as the SQUARE ROOT digit above the first pair of zeros (the square root now 
reads "l. 4"}. We now double the 111411 , ignoring the decimal, to get 11 2811 • This "28" is 
the first part of the second "L" line number (an easier way is just to double the last digit 
in the preceding "L" line number, making sure to carry the extra "1" when doubling, if 
the last preceding "L" line number is greater than 4). 

Now we bring down the second pair of zeros to complete the second REMAINDER of 
400. Now we need a 280-289 and 1-9 number whose product is equal to or less than 400. 
In testing, we have: 280 x 0 = 0; 281 x 1 = 281; 282 x 2 = 564. Since 281 is the largest 
number less than 400, we then subtract it from 400, forming part of the third REMAINDER 
(119). We complete the second "L" line number (281} and enter the 11111 as the next SQUARE 
ROOT digit above the second pair of zeros (the SQUARE ROOT now reads 1'1. 41 11). We now 
double the "141", ignoring the decimal, to get "28211 • This "282" is the first part of the 
third "L" line number. 

Now bring down the third pair of zeros to complete the third REMAINDER (11900). 
Repeat the checking process for numbers between 2820-2829 and 0-9 to obtain 2824 x 4 = 
11296, the largest product less than 11900. The process is continued for as many places 
as necessary. 

The following are additional examples for the reader to observe the square root 
process: 

a. 1. 7 3 2 0 5 b. 4 0. 9 6 
3 . 00A00A00A00A00 ✓ 16/\77. 72N,6 
1 16 

..ll.]zoo ~77 
1 89 0 
~ 00 ~ 72 

10 29 72 81 
3462 I 71 00 8186 I 4 91 16 

69 24 4 91 16 
34640 I 1 76 00 0 

0 
346405 I 1 76 00 00 

1 73 20 25 
2 79 75 
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6. 8. 1 EXTRACTING THE SQUARE ROOT (Continued) 

C. 1 1. 0 4 6 
✓ 1/\22. 01A,50A00 

1 

--2l..J022 
21 
~ 01 

0 
2204 I 1 01 so 

88 16 
22086 13 34 00 

13 25 16 
9 84 

ote in example (a) that when we use the number "5'' to complete an "L" line number 
(as in the 5th "L'' line), the multiplied product of the 11 L11 line and 11511 has exactly the same 
digits of the SQUARE ROOT which have been calculated up to that point, but the last 11511 is 
replaced by "25 11 • Note that 346405 x 5 = 1732025, which illustrates this point in example 
(a). 

6. 8. 2 THE BINARY SQUARE ROOT 

The general rules are the same except that all digits, numbers, and operations are 
performed and written in the binary system. The process simplifies greatly because 
doubling a binary number means only adding an extra 11011 onto the number. For example, 
doubling 1011 gives 10110 (1011 x 10 = 10110). Multiplication simplifies down because we 
either write down the "L" line number and subtract, or we have 11011 • We do not have to 
test several possibilities of "L" line digits because we can have only "1" or 11011 • Now let 
us consider ...f'2in binary. This is written as ""11°"· We will determine {lo to 8 
places . Observe the steps in the example below. 

100 

1. 0 1 1 0 1 0 1 0 
"1 10.00~00.,.._oo,.._ooAooAooAooAoo 

1 
1 00 --------- ----"'"'\ 

0 
_l_0_0 1____, 1 0 0 0 0 

10 01 
10101 1 11 00 

1 01 01 
"L" LINE - 101100 I 

UMBERS ---- O / 

1 11 00 

1 01 10 01 
10110100 I 1 01 11 oo 

0 

{ 
BINARY 
SQUARE 
ROOT 

{ BINARY 
REMAINDERS 

El • 1011001 ! 1 11 oo oo ◄•-----.....-,, 

101101001 ! ~1-0_1_1_1_0_0 00 -------....l 
1 01 10 10 01 

10110101001 1 11 00 ---------
0 

1 11 00 

wigfi
Stolen 2 Line Transparent
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6. 8. 2 THE BINARY SQUARE ROOT (Continued) 

Note again either the "L" line numbers, or 11011 were the only possibilities for the 
subtractions. Also, only the "L" line numbers ending in 11111 were subtracted. If the 
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"L" line numbers ended in 11011 , then 11011 was subtracted. The number "l" (1 x 1 :: 1) is 
the largest square less than 10 and was subtracted from it, leaving a REMAINDER of 11111 • 

11111 was ntered above the first pair of numbers 1'10" and the second BINARY POINT was 
entered in above the radical in the proper position. The 11111 was doubled to yield "10" 
which was entered as part of the first "L'' line number. The first pair of zeros was 
brought down to complete the first REMAINDER. The final digit of the first "L'' line 
number could only be "0" or "1" leaving the two possibilities of 100 and 101. Since 101 
is larger than the REMAINDER, the only other possibility left is 100 . We completed the 
first "L'' line number by adding on a 1101' and entered another "O" above the first pair of 
zeros to the right of the binary point.. Subtracting "0" and "bringing down" the second pair 
of zeros (right of the binary point) completed the s cond REMAINDER (10000). Doubling 
the ''1011 in the "SQUARE ROOT" digits, ignoring the BINARY POINT, gave "100" which 
was entered as part of the second "L" line number. The two possibilities for completing 
the second "L" line number were 1001 and 1000 . Since the larger 1001 was still smaller 
than the remainder 10000, the second "L" line number became 1001. The 111 11 was entered 
above the second pair of zeros and the "L" line number was subtracted from the second 
REMAINDER, leaving 111. "Bringing down" the third pair of zeros completed the third 
REMAINDER (11100) and doubling the 11101" in the SQUARE ROOT yielded the first 4 digits 
of the third "L" line number. In testing, the "L'' line number 10101 could be subtracted 
from REMAINDER 11100 and the resulting "1" was entered above the third pair of zeros . 
The process was carried out to 8 binary places . 

The following additional examples will let the reader better observe the process of 
extracting a binary square root. 

1. 1 0 1 1 1 0 1 1 
a. ,'1 ll.00/\00A00,-_00A00A00/\00AOO 

1 
101 I 10 00 

1 01 
1100 I 11 00 

0 
11001 I 11 00 00 

1 10 01 
110101 1 01 11 00 

11 01 01 
1101101 10 01 11 00 

1 10 11 01 
11011100 I 10 11 11 00 

0 
110111001 10 11 11 00 00 

1 10 11 10 01 
1101110101 1 00 11 01 11 00 

11 01 11 01 01 
1 01 10 01 11 

b. 
1 o. 1 

✓ 1 10. 01 
1 

...1Q.LI010 
0 

1001 10 01 
10 01 

0 
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6. 9 ROUNDING "UP" AND ROUNDING 11DOWN11 

Rounding "off" is the process of shortening the length of a fractional by dropping 
one or more digits at the extreme right. 

In the decimal fractional . 33333333333, we may "round off11 to two places as . 33. In 
this case we rounded "OOWN", meaning we just dropPed the remaining digits. Now 
consider the fractional . 66666666666666. In "rounding off1' to two places, we have. 67 . 
In this case, we rounded "UP" (meaning that all digits were dropped after the second 
digit, but the value of the second digit was increased f>y 111'?• 11Rounding off" to "N" digits 
means that we retain "N" number of digits in the fractional and drop all the rest of the 
fractional digits. 

The "round off'' rule for the decimal system is to observe the first digit to be dropPed. 
If that digit is a 5, 6, 7, 8, or 9, then we round "UP". However, if that digit is a 0, 1, 2, 
3, or 4, then we round "DOWN" and simply drop the digits. Examples are 1.41421, 
3.14159, 2. 71828, and 1. 73205. If we "round off'' the preceding to two-place fractionals, 
we have: 1.41, 3.14, 2. 72, and 1. 73, respectively. Note that 112. 71 11 became 2. 72 before 
dropping the "~28". Note the first digit to be dropped is an _!! and the rule says we must 
add "1" to the 2. 7l before dropping the 1182811 • In "rounding off'' to three-place fractionals, 
we have 1. 414, 3. 142, 2. 718, and 1. 732, respectively. Note that 113.141 11 became 3.142 
before dropping the "19" because of the "5". In "rounding off'' to four-place fractionals, 
we have 1. 4142, 3.1416, 2. 7183, and 1. 7321, respectively. Note that 113. 1415" became 
3. 1416 before dropping the "9"; 112. 7182" became 2. 7183 before dropping the "8"; and 
111. 7320" became 1. 7321 before dropping the "511 • A further example is: 1. 0995. In 
"rounding off" to three fractional places, we have 1. 100 because of the "carries" generated 
by the 9's. Also, the fractional 1. 99995 "rounded off'' to four places would be 2. 0000, 
again because of the "carries". This concept can be extended to numbers which are not 
fractionals . Consider 346. In "rounding off" to two significant digits, we start from the 
extreme left and drop all digits beyond those two and add a zero (or zeros) when necessary 
to show the proper magnitude of the number. Now 346 "rounded off'' to two places becomes 
350. 78,600 "rounded off" to two places becomes 79,000. 1995 "rounded off1' to three 
places becomes 2000, and so on. 

6. 9.1 BINARY "ROUNDING OFF" 

The rules for binary numbers simplify greatly since a digit can be only "l" or "0". 
If the first digit to be dropped is a "l", then round 11UP11 • If it is a 11011 , then round 
"DOWN". For example, 1. 0101 "rounded off11 to a three-place fractional is 1. 011. 
"Rounding off'' to a two-place fractional, we have: 1. 01. Now suppose we have something 
like 1. 01111. "Rounding off" to three places we have 1. 100 because of the "carries". 
Likewise, 11rounding off" to a four-place fractional, we have 1. 1000 again because of the 
"carries". The presence of "carries" when "rounding off11 binary numbers occurs much 
more often than with ''rounding off" decimal numbers. 

6. 10 BINARY COMPLEMENT 

The BINARY COMPLEMENT of a number is that binary number which has the "1' s" 
and 110's" of its digits interchanged. Examples are: 
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6.10 BINARY COMPLEMENT (Continued) 

BINARY NUMBER BINARY COMPLEMENT 

10111010011 01000101100 

111 000 

110110010 001001101 

10110101000 01001010111 

100001111 011110000 

Note that the sum of a binary number and its complement is a binary number whose 
tot.al di&:its are the same as the original number of digits and all "1 's" . Illustrating this 
with the above examples, we have: 

10111010011 

+01000101100 

11111111111 

111 

+000 

111 

110110010 

+001001101 

111111111 

10110101000 

+01001010111 

11111111111 

100001111 

+011110000 

111111111 
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7. B ARY ELECTRONIC COMPUTER CffiCUITS 

In order to build a digital electronic computer, we must convert logic FACTS and 
CONCLUSIONS into electronic circuits. The basic circuit for representing logic FACTS 
is the FLIP-FLOP. The electronic logic GATE uses the flip-flop "facts" (inputs) to 
determine a conclusion. In order to produce automatic computer operation, the PULSE 
GENERA TOR is needed to command flip-flop operation. 

The three circuits mentioned above (FLIP- FLOP, GATE, and PULSE GENERA TOR) 
represent the very heart of all computers. It is possible to build giant computers with 
only these three basic circuits I 

Electronic circuits shown in this section correspond to LIBE electronic circuits now 
on the market, such as the FF-1, AM-1, AND-1, OR-1, A0-1, and EOR-1. All LIBE 
circuits are built on printed circuit boards with connection pins protruding from the top 
side. Connections are made by placing "alligator-clip" wires over these pins. The two 
voltage pins are located at the !2,e of each unit {the "positive" (+) pin is marked with a red 
dot and appears in the same position on all units). Power must be wired to each and every 
unit for operation. 

7. 1 THE FLIP- FLOP 

The electronic FLIP-FLOP (the common name for a BISTABLE MULTIVIBRATOR) 
generates the logic FACTS for the digital computer. The flip-flop can serve as a 
"memory", perform addition and subtraction, count, and control other circuits. 

This basic building block of all computers has millions of uses. There is no limit as 
to how many can be used in a system. It is possible to build the simplest binary counter 
or the most complicated computer depending on what is done and how many units are used. 
The wide range of wiring projects in this book illustrates this point. 

Basically, the flip-flop is an electronic circuit which changes state from "0 " to "OFF" 
or "OFF" to "ON" at the proper pulse signal. One flip-flop can act as a pulse signal to the 
other, which can in turn trigger another, and so on. 

~ 

• -< C •-· 

-----------
• • • A B C 

"TRUE" 
SIDE 

- oe 

"FALSE" 
SIDE D E F 

• • • 
{a) 

1'TRUE" 
SIDE 

11 FALSE" 
SIDE 

• • • A B C 

(b) 
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7. 1 THE FIJP-FLOP (Continued) 

The figures above show the pin configuration of the LIBE FF-1 with its "readout" 
lamp on top (a), and the flip-flop symbol for comparison (b). The dots represent the pin 
connections (the two power pin connections are not shown in figure b) for wiring the flip­
flop. The "tip" on the right-hand side represents the "trigger" input pin. 

There are many ways that flip-flops can be wired, the simplest being to connect pin A 
to pin C and pin D to pin F (along with the proper 6-VDC connections to th voltage pins). 
A pulse signal wired into pin G (the "trigger" input) will cause the flip-flop to change state. 
Then either the "TRUE" output (pin A) or the "FALSE" output (pin D) of the driven flip-flop 
can be used to drive another flip-flop. 

A flip-flop is defined to be "ON" when its readout light is on, and "OFF" when its 
readout light is off. The light is located on the "TRUE" (top) side of the flip-flop. The 
side without the light is called the "FALSE" side. 

The voltage pins will not appear in any of the flip-flop symbols. They will always be 
on top and should be wired up to the proper voltages from the battery. Pin-identifying 
letters will not be shown after the initial explanation. Note that pins A, B, and C will 
always be in the top row. Pins D, E, and F will be in the bottom row. Pin G will be to 
the right center edge. The top half of the flip-flop is the "TRUE" side and the bottom half, 
the "FALSE" side. The light bulb indicator is always on the 11TRUE" side (top) between 
the two voltage pins. The light bulb is also not shown on the flip-flop symbol. 

To repeat again: In order to work, each flip-flop must have the proper voltage con­
nections. "+611 must be connected to the pin above A and 11- 11 to the terminal above C. The 
flip-flop pins are more accurately described as follows: 

A = "TRUE" DIRECTOR OUTPUT ("TRUE1' OUTPUT) 

B = "RESET" INPUT 

C = "TRUE'1 FOLLOWER INPUT 

D = "FALSE" DIRECTOR OUTPUT ("FALSE" OUTPUT) 

E = ' SET" INPUT 

F = "FALSE" FOLLOWER INPUT 

G = "TRIGGER" INPUT 

Pin G is where all pulse signals are wired in. Pins A and Dare actual pulse signals 
and can be used to trigger another flip-flop. The FOLLOWER INPUTS (pins C and F) 
receive voltage pulse commands along with the "TRIGGER'' INPUT (pin G) to operate the 
flip-flop. Pins B and E are used either to "enter" a binary number (turn the light on) or 
"cancel" (turn the light off) . To 11enter'' a number, touch pin D to pin E . The flip-flop is 
now "set" (the number has been entered). To "cancel" a number, touch pins A and B 
together. The flip-flop is now "reset" (the number has been cancelled) . 

The electrical volt.age output on the "TRUE'' and "FALSE" OUTPUT pins is in the form 
of a SQUARE WAVE. This means that the voltage is either ''0 " or "OFF" as shown 
below: 

-~ ''DOWN-SWING";, 
+6V ,;,r- 11 ov l - -, I ._I __,.,I 

----• -- "UP-SWING11'!>=-------> 
.I ___ :::F~" 

time --. 
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7.1 THE FLIP-FWP (Continued) 

Note that the voltage can either RISE from 0V to +6V, or FALL from +6V to 0V. There 
is no other voltage value in between 0 and +6. The.!!:!§§ occurs during a voltage UP-SWING 
and the FALL occurs during the voltage DOWN-SV/ING. The TRIGGER INPUT is sensitive 
only to DOWN-SWING voltage changes and the flip-flop will change st.ate on a pulse DOWN­
SWING. The "l'RUE" OUTPUT and "FALSE" OUTPUT of the flip-flop are always in 
opposite st.ates: 

+6V 

I 1' I 1' I I' I I ' "ON" 
"TRUE" OUTPUT 

ov "OFF" 
- -·------ - - - - - ' time I ' +6V I I' I I I I I 

"ON" 
"FALSE" OUTPUT I ov "OFF" 

When using the OUTPUTS of one flip-flop to trigger another flip-flop, it should be 
noted (from the arrows in the above figure} that the DOWN-SWINGS will occur at different 
times in relation to the "TRUE" readout light. The "TRUE'' OUTPUT will produce a 
DOWN-SWING when the light goes off, but the "FALSE" output will produce a DOWN­
SWING when the light comes on. 

The following circuit is recommended for flip-flop construction and is used for the 
LIBE FF-1 units: 

Ql 

F 

,--------------------,.-------1• +6 

R5 - lOK 

Cl - 1000 µ. µ. fT.I C 2 - 1000 µ.µ. f 

G 

R2 - 5600 

All resistnnce values - 10,+30% 

11 
(Lamp} 
Type 328 
or equivalent 
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The physical layout of the above circuit is on a 2 1/211 by 4 11 printed circuit board 
with top and bottom mounting holes as shown in the picture below. 

7. 2 THE PULSE GENERATOR 

39 

The PULSE GENERATOR (or ASTABLE MULTIVIBRATOR) is the commanding 
device that makes the flip-flops work automatically. Usually only one or two pulse gen­
erators are needed for specific computer projects (either fast pulse or slow pulse, 
depending upon application). Either of the two pulse output pins (not the voltage pins I) 
can be used for the pulse signal. 

PULSE 
OUTPUT 
PINS 

+6 • • ------
• 

------,.-• 
(a) 

------i-• 
PULSE 
OUTPUT 
PINS 

------i-• 

(b) 

The figures above show the pin configuration of the LIBE AM- with the voltage pins 
on top (a), and the pulse generator symbol for comparison (b). The dots represent the 
output pins in figure (b) . 

The pulse from either output pin can be wired directly to pin G of one or more flip-­
flops for automatic "trigger" operation. 

The electrical voltage on the PULSE OUTPUT pins is also in the form of a SQUARE 
WAVE, but the difference is that the pulse generator produces this square wave auto­
matically whereas the flip-flop must be driven by a pulse. The DOWN-SWINGS produced 
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7. 2 THE PULSE GENERATOR (Continued) 

by the pulse generator will cause flip-flop triggering. 

The following circuit is recommended for pulse generator construction and is used 
for the LIBE AM-1 units: 

R3 - 47K R4 - 47K R2 - lK 

- 10 µf * C 
-------t 

Q2 

All resistance values -10,+30% 

*The 10 µf value will produce about 2 pulses per second. Lower value capacitors will 
produce faster pulse rate frequencies. Higher capacitance values will produce slower 
frequencies. 

The physical layout of the above circuit is on a 2" x 4" printed circuit board with top 
and bottom mounting holes, as shown in the picture below. 
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7. 2 THE PULSE GENERA TOR (Continued) 

A variable pulse generator circuit can be built by replacing Rl and R2 by adjustable 
resistors (potentiometers) of about l0K. Also, a l0K potentiometer can be added between 
the bases of the two transistors. The following schematic diagram shows a variable pulse 
generator circuit which will pulse at the rate of about 1 pps to 2000 pps by adjustment of 
any one or all three of the potentiometers. 

R3 - 47K 

Rl - 10K 
POTE TI OM ET En 

Cl - 10 µf 

Ql Q2 

R5 - lOK 
PO TEN TIO IF.TF.H --. --.. 

All rr.sistnn c values -10, +30% 

wigfi
Stolen 2 Line Transparent
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7. 3 LOGIC GATES 

Up to now we have discussed flip-flops which generate logic FACTS. Now, using these 
facts, the LOGIC GATES generate CONCLUSIONS. In other words, logic gating is the con­
trol of flip-flop inputs (also "gate11 flip-flop inputs) and outputs by additional electronic 
circuitry called a GATE. Each GATE has a specific logic function (such as "AND", ''OR", 
"EOR", "SUM", etc.) and will produce flip-flop control determined by this logic function. 

There are no limits to the kinds of electronic logic gates that can be built. Gates such 
as "AND", "OR", 11NAND", ''NOR'', "EOR'', "SUM1', and "INVERTER" are but a very few. 
However, the most important two gate types which form the basis for all computer building 
logic are the "AND" and "OR". 

Gate NOMENCLATURE is fairly easy. The general format for naming gates built on 
electronic circuit cards is as follows: 

(1) Identify the gate logic function. 
(2) Identify the number of identical gates on the card. 
(3) Identify the number of inputs per gate. 

For example, in the LIBE AND-1, we have 2 separate identical "AND" gates with 4 in­
puts on each one. The correct nomenclature would then be: "AND" GATE, DUAL, 4-INPUT. 
The LIBE OR-1 has 2 separate identical "OR" gates with 4 inputs on each one. The correct 
nomenclature would then be: "OR" GATE, DUAL, 4-INPUT. Note that for step (1), we 
merely call out a logic function. For step (2), we call out DUAL, TRIPLE, QUADRUPLE, 
5-, 6-, for whatever number of identical gates there may be. However, in the case of 
only one gate, this step may be skipped as it is not necessary to further identify a single 
gate. Step (3) must show an identification number of at least 2: 2-, 3-, 4-, 5-, 6-, etc. 

7. 3. 1 THE "AND" GA TE 

The single "AND" gate is represented by a semicircle as shown below. For discussion 
purposes, we will consider a gate with 4 inputs. Any inputs which are not used are merely 
left open. The LIBE AND-1 has two identical "AND" gates of 4 inputs each and they are on 
the right. The outputs are on the left. The top and bottom output pins are the "AND" out­
put pins while the inner two pins are the ''NANO" output pins for experimentation with nega­
tive logic. Inputs may be wired in from the ''true'' or "false" side of a flip-flop, or from 
the output of another gate . 

• +6 .- . +6 • ~--~---- ~-----~-
"AND" -. e E Ae OUTPUT 

GATE i]A L "NAN D"-+ e F Be 
fl B 

ce 
INPUTS C 

OUTPUTS o• F D 

OUTPUTS Ae Ft]A GATE 
" AND"~ 

Be 
112 Ee e ~ e F ce 

"AND" ~ . E oe INPUTS 

Figure (a) Figure (b) Figure (c} 
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The two top power pin connections are made in the same manner as on the FF-1 
flip-flop units. 
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Pins A, B, C, and Dare the 4 inputs of each gate {GATE INPUT PINS). The "E" 
PINS represent the "AND" OUTPUT. Note that these "E" PINS are the outside output pins 
and that the top gate (/fl} has "E" on !22 while the bottom gate (#2) has "E" on the bottom_ 
The "F" PINS, or inside "OUTPUT" pins are the 11NAND" OUTPUTS. 

The "AND" output of each respective gate is "ON" only when all its inputs are "ON", 
and "OFF" when any one of its inputs is "OFF". The "NAND" output of each respective 
gate is "OFF" only when all its inputs are ''ON11 , and 11ON" when any one of its inputs is 
1'OFF". 

Both the "AND" and "NAND" outputs can be used for "DOWN-SWING TRIGGERING" of 
flip-flops; and either output can be wired into pin "0" of a LIBE FF-1 flip-flop to trigger it. 
If only two or three "AND" inputs are needed, then the other 11input" pins should be left open 
(no connections). 

The simplified "gate" logic symbol {referring back to figure c) will be used to show all 
"AND" logic operations. The small circles, which are tangent to the logic diagrams in 
figure (b), represent the 1'NAND" outputs. 

The following input possibilities exist for a 4-input 11AND" gate: 

Note that the last case is where all 4 inputs are a "1". This is the only case where the 
output is a 11111 • In all other cases, the output is a 11011 • To be more specific, the definition 
of an "AND" gate is as follows: IF ALL INPUTS, REGARDLESS OF HOW MANY I ARE "1" 
THEN THE OUTPUT IS A 111". IF ANY INPUT IS A 11011 1 THEN THE OUTPUT IS A 11011 • 

The following circuit is recommended for "AND" gate construction and is used on both 
the LIBE AN~l and A0-1 logic gates. 
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7. 3 . 1 THE "AND" GATE (Continued) 

--------•-----◄t,------ "+6V11 

R5 lOK 

+ 
CR4 

+ 
4 

Q2 
INPUTS* + 

+ "-" 
CRl -

*To increase the number of inputs, add extra diodes in addition to the four already shown. 
Be sure that all the anodes are connected to the same point. The input points will then be 
on the cathode ends of the diodes. 

The physical layout of the dual 4-input "AND" gate with "NANO" output is on a 2" x 4" 
printed circuit board with top and bottom mounting holes as shown in the picture below. 
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7. 3 . 2 THE 11OR'' GATE 

The single "OR" gate is represented by a triangle as shown below. For discussion 
purposes, we will again consider a gate with 4 inputs . Any inputs, which are not used, 
are merely left open . The LIBE OR-1 has two identical "OR" gates of 4 inputs each and 
they are on the right . The outputs are on the left. The top and bottom pins are the ''OR" 
output pins while the inner two pins are the "NOR11 output pins for experimentation with 
negative logic. Inputs may be wired in from the "true'' or "false" side of a flip-flop, or 
from the output of another gate . 

• +6 .- • +6 .-
,._ ---- --- - ---~---- OUTPUT 

"OR" - e E Ae Et:]: L e F Be GATE 
II OR' - c e #1 • • c n• INPUTS F D 

OUTPUTS 
- INPUT 

OUTPUTS Ae 
F~ : Be GATE INPUT 

II OR" - e F c e #2 E e c 
"OR" - e E n• INPUTS D 

Figure (a) Figure (b) Figure (c) 

The two top power pin connections are made in the same manner as on the FF-1 flip­
flop Wlits . Pins A, B, C, and Dare the 4 inputs of each gate (GATE INPUT PINS). The 
"E" pins represent the "OR" OUTPUT. Note that these "E" PINS are the outside output 
pins and that the top gate (#1) bas "E" on _.!:2J2 while the bottom gate (#2) has "E" on the 
bottom. The "F" PINS, or inside "OUTPUT" pins, are the "NOR" OUTPUTS. 

The "OR" output of each gate is "ON" whenever one or more of its inputs is "ON", and 
"OFF" only when all of its inputs are "OFF". The "NOR" output of each respective gate is 
"OFF" whenever one or more of its inputs is "ON", and "ON" only when all of its inputs 
are "OFF". 

Both "OR" and ''NOR'' outputs can be used for "DOWN-SWING TRIGGERING" of flip­
flops; and either output can be wi.red into pin "G" of a LIBE FF-1 flip-flop to trigger it. 
If only two or three "OR" inputs are needed, then the other input pins should be left open 
(no connections). 

The simp1ified "gate" 1ogic symbol (referring back to figure c) will be used to show all 
"OR" logic operations. The small circles, which are tangent to ihe logic diagrams in 
figure (b), represent the "NOR' outputs. 
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7. 3. 2 THE "OR" GATE (Continued) 

The following input possibilities exist for a 4-input "OR" gate: 

Note that the first case is where all 4 inputs are a "0". This is the only case where 
the output is a "O". In all other cases, the output is a "1". To be more specific, the 
definition of an "OR" gate is as follows : IF ALL INPUTS, REGARDLESS OF HOW MANY, 
ARE "0" THEN THE OUTPUT IS A "0". IF ANY INPUT IS A "1" THEN THE OUTPUT IS 
A "1 ". 

The following circuit is recommended for 11OR11 gate construction and is used on both 
the LIBE OR-1 AND A0-1 logic gates. 

--------~-----"+6V" 
R2 lK 

"OR" 
+ 

CR4 
II OR" 

4 CR3 Ql 

INPU~ CR2 

Q2 

*To increase the number of inputs , add extra diodes in addition to the four already shown. 
Be sure that all the cathodes are connected to the same point. The input points will then be 
on the anode ends of the diodes. 
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7. 3 . 2 THE "OR" GATE (Continued) 

The physical layout of the dual 4-input "OR" gate with "NOR" output is on a 2" x 4" 
printed circuit board with top and bottom mounting holes as shown in the picture below. 

7.3 . 3 THE "AND" & "OR" GATE 
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The LIBE A0-1 card contains two gates (like the AND-1 and OR-1) but the top gate is 
an "AND" GA TE and the bottom gate is an "OR" GATE. Both gates again have 4 inputs. 
Power connections, INPUT PINS and OUTPUT pins are similar to both the AND-1 and 
OR-1 configurations . The figures below can be compared to those of the AND-1 and OR-1. 

. +6 .- e +6 .-________ _ ,.. _ ~-- ... ----
"AND" - e E Ae ,~r "AND11 

11NAND" - e F Be 
GATE B 

ce INPUTS C 
De F D 

Ae 
11OR" 

F ~ A 11NOR' 1
- e F Be 

GATE E e B 
ce 

INPUTS 
e c 

"OR" -+ . E oe D 

(a) (b) 
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7. 3 . 3 THE "AND" & "OR" GA TE (Continued) 

The physical layout of this gate is on a 2" x 4" printed circuit board with top and 
bottom mounting holes as shown in the picture below. 

7. 3.4 NEGATIVE "AND" & "OR" GATES {"NAND" & "NOR") 

As was mentioned earlier, "NAND" and "NOR" are shortened expressions for "NOT 
A D" and "NOT OR". In other words, by putting the letter "N" before "AND" or "OR" 
means we have a gate with the outputs inverted. An inverted output is a "l" instead of a 
"0", or a "0" instead of a "l", (i.e. , replace "l" by "0" and "0" by "l "). The electronic 
gate symbols for ''NAND" and "NOR" are the same as the corresponding "AND" and "OR" 
except that a small circle on the output indicates that the output is inverted . Both "NAND" 
and ''NOR" gates are shown below: 

• .,_. INPUT .,._ INPUT 

INVERTED ~ • .,_ INPUT INVERTED .,_INPUT -.. 
OUTPUT • .... PUT OUTPUT .,_INPUT 

• .._ INPUT .,_ INPUT 

''NAND'' "NOR" 

wigfi
Stolen 2 Line Transparent
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7. 3. 4 NEGATIVE "AND" & "OR" GA TES ("NAND" & "NOR") (Continued) 

The IJBE "OR-1 11 , 11ANO-l", and "A0-1 11 gates have one regular and one inverted 
output. That is, the "AND" gate also has a "NAND" output and the "OR" gate also has a 
"NOR" output. If both the regular output and inverted outputs are used, then the "invert" 
circle is added to the gates as follows: 

OUTPUTS • ,._ INPUT 

• ._ INPUT 

• ....., INPUT 

• ..__ INPUT ......._ _ _, 

"AND" GA TE WITH 
"NAND" OUTPUT 

OUTPUTS 

"OR" ..... 

"NOR"....., 

~ INPUT 

.,._ INPUT 

.,_ INPUT 

~ INPUT 

"OR GATE WITH 
11NOR" OUTPUT 

Again, considering all the 4 possible inputs for a "NAND" and "NOR" gate, the following 
possibilities exist: 

0 0 
0 0 

0 
0 1 
1 0 

0 0 
1 

0 
1 

0 1 
l 0 

1 1 
0 0 0 
0 1 
1 0 

1 1 
1 0 1 
0 1 
1 0 
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7. 3. 4 NEGATIVE "AND" & "OR" GA TES· ("NAND" & "NOR") (Continued) 

Note the last case for the "NAND11 gate and the first case for the 11NOR11 gate. 
Specific definitions are as follows: IF ALL INPUTS, REGARDLESS OF HOW MANY I OF 
A 11NAND11 GATE ARE 11111 THEN THE OUTPUT IS A 110 11• IF ANY INPUT IS A 11011 , THEN 
THE OUTPUT IS A 11111• IF ALL INPUTS, REGARDLESS OF HOW MANY, OF A "NOR" 
GATE ARE 11011 THEN THE OUTPUT IS A 11111• IF ANY INPUT IS A 11111 , THEN THE 
OUTPUT IS A 110 11

• Compare these definitions with those for an 11AND" and 11OR11 gate and 
note the difference in the outputs. 

The following circuits may be used for "NAND" and "NOR" gates: 

"NAND" CffiCUIT 

"NAND" 

Ql 

4 
INPUTS* 

+ 

~

.,_..,._CRl 

W----IN--- CR2 

W----tN---CR3 

11NOR11CffiCUIT 

lK 

"NOR" 

Ql 

--

*The number of inputs may be increased in the same manner as the 11AND11 and 11OR11 gates. 
The physical layout of this negative gate is also in a 2" x 411 printed circuit as a dual gate 
with any combination of gates (i.e. , dual 11NAND11 , dual 11NOR11, or dual gate with "NAND11 & 
"NOR''). 

7. 3. 5 THE 11EXCLUSIVE OR11 GATE ("EOR11 GATE) 

The 11EXCLUSIVE OR'' gate is represented in this text by an edge-standing triangle 
with a concave arc side for the inputs. A 4-input 11EOR11 gate is shown 1n the diagram 
below. The dots represent the 11input11 and "output" connections. The difference between 
11OR" and "EOR11 is that the "OR" gate output will be a 11111 when at least one input is a 11111• 

However, the 11EXCLUSIVE OR" output will be a 11111 if, and only if one input is a 11111• 
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7. 3. 5 THE "EXCLUSIVE OR" GATE ("EOR" GATE) (Continued) 

OUTPUT -. 

An "EOR" gate of any number of inputs may be constructed by the sole use of "AND" 
and "OR" gates. This will be discussed in section 10. 

The following possibilities exist for a 4-input "EOR" gate: 

Note that only where there is a single 11111 input, the "EOR" output is a "1". To be 
more specific.the definition of an "EOR" gate is as follows: IF ONE AND ONLY ONE 
INPUT IS A "l", THE OUTPUT IS A 11111 • IF A YOTHER INPUT IS A "1" OR IF ALL 
INPUTS , REGARDLESS OF HOW MANY, ARE "0" THEN THE OUTPUT IS A 11011 • 

The following circuit is used for "EOR" gates, but a severe limitation is that it pro­
duces sharp electronic "spikes'' (false "trigger'' pulses) when any of its inputs go from "O" 
to "l" or from "1" to "0". Hence, it is only useful for direct display outputs and not for 
"triggering". The circuitry for "EOR" gates of more than 2 inputs gets very complicated. 
These multi-input "EOR" gates operate much more efficiently when "AND" and "OR" 
equivalent logic is used (see section 10). 
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7. 3. 5 THE "EXCLUSIVE OR' ' GA TE ("EOR" GA TE) (Continued) 

+6V --------- --- - - ----------, 

R2 lK 

Q3 Q2 --

The physical layout is on a 2" x 4" printed circuit board as a dual gate, 2-input. 

7. 3. 6 THE "SUMMATION" GA TE ("SUM" GA TE) 

The "SUMMATION" gate is represented in this text by a semicircle with a concave 
connecting arc side for the inputs. A 4-INPUT 11SUM" gate is shown in the diagram below. 
The dots represent the "input" and "output" connections. The difference between "SUM" 
and "EOR" is that the "SUM" output is "l" when the number of inputs of "1" are odd. Note 
that the cases where only one input is a "l" (in the "EOR" gate) is covered by the "SUM" 
gate definition and, hence, all the "EOR" possibilities are also applicable to the "SUM" 
gate. However , the possibilities of 3 inputs being a 11111 will show up as a 11111 for "SUM", 
but not for "EOR". It can be noticed in the case of the 4-input "SUM" gate (by comparison 
with the "EOR" output) that there are four more cases where the "SUM" gate is a "1". 

A "SUM" gate of any number of inputs may be constructed by the sole use of "AND" 
and "OR" gates. This will be discussed in section 10 . 

The following possibilities exist for a 4-input "SUM" gate: 
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7. 3. 6 THE "SUMMATION" GA TE ("SUM" GA TE) (Continued) 

o-{t 0 1~ ¾ I 0 
0 
1 

1~ ¾ ~ 0 ~ l~ i 
1-{t ¾ i 0 ~ l~ i 
o-{t 1 1~ ¾ ! 1 

0 
1 

ote that only an odd number of 111 11 inputs will produce a 11111 output. Since we have 4 
possibilities, either one or three 11111 inputs will produce a "l" output. 

The "SUM" gate is also lmown as a "HALF ADDER" and can, in addition, be considered 
a "PARITY" gate . "PARITY" as used in this text, is the condition of being odd or even. 
That is, it will sense an odd or even number of 11111 inputs. If there are no inputs, 2 inputs, 
or 4 inputs of "1", then this is considered "EVEN PARITY". If there is one input or three 
inputs of "1", then this is considered "ODD PARITY". 

In other words, the 11SUM1' gate will sense even or odd parity of 11 111 inputs . To be 
more specific, the definition of a 11SUM" gate is as follows: IF THE PARITY OF ALL "1" 
INPUTS, REGARDLESS OF HOW MANY, IS ODD, THE THE OUTPUT IS A 11111 • IF THE 
PARITY OF ALL 11111 INPUTS IS EVEN, THEN THE OUTPUT IS A 11011 • 

This can be verified by adding up any combination of binary 1111s 1', or 111 's" and 110 1s 11 , 

noting only the SUM and ignoring any "carries". 

Examples: 

1 + 1 = 0 

1 + 1 + 1 = 1 

l + l + O+ O + l + l + l = l 

(ignore 11carry11 1) 

(ignore 11carry11 1) 

(ignore 11carry 10) 

Note that a 2-input "SUM1' gate is exactly the same as a 2-input "EOR" gate. This 
means that for two inputs only, the "SUM" and "EOR" gates may be used interchangeably. 

The following circuit is suggested for a 2-input "SUM" gate. The outputs of this circuit 
are free from electronic "spikes" and can be used for flip-flop triggering or direct display 
outputs . The circuitry for "SUM" gates of more than 2 inputs gets very complicated. These 
multi-input "SUM" gates operate much more efficiently when "AND" and "OR" equivalent 
logic is used (see section 10) . 
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7. 3. 6 THE "SUMMATION" GA TE ("SUM" GA TE) (Continued) 

RlO 

INPUTS 

A•----t1~• 

+ 
~-eiHa cR2 

~--+---,.. CRl 

Rll 

AvB 

Rl lK 

OUTPUT 

(A + B) 

QI 

The physical layout is for a single 2-input "SUM" gate on a 2" x 411 printed circuit 
board. 

7. 3. 7 THE ''INVERTER" GA TE {''NOT" GA TE) 

The function of the "INVERTER11 gate is to change the output into the opposite (or "NOT") 
of what the input is. The "INVERTER" gate has only one input. By this definition, the 
inverted gates "NAND" and "NOR" operated with single inputs will act as "INVERTER" 
gates. 

These 11INVERTER" gates will be used very little (or not at all) because inverted out­
puts are available from the "FALSE" sides of flip-flop inputs, and from the "NAND" and 
"NOR" outputs of the "AND" and "OR" logic gates. The electronic gate symbol for "NOT" 
is a small circle in front of an INPUT or OUTPUT position as shown below. The dot within 
the small circle represents the pin connections which would be made. 
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7. 3. 7 THE "INVERTER" GATE ("NOT" GATE) (Continued) 

INVERTED 
OUTPUT 

INVERTED OUTPUT -----t@~+--- INPUT 

INVERTED 
INPUT 

UT 

PUT 

PUT 

INVERTED 
OUTPUT 

The basic circuit for the "INVERTER" gate is as follows: 

--

55 

UT 

{ INVERTED 
) INPUTS 

The physical layout consists of four of this single-input inverter on a 211 x 4" 
printed circuit board. 

7. 4 GA TE OUTPUT "TRIGGERING" AND DffiECT DISPLAY 

To produce flip-flop "triggering" by gate outputs, just wire the outputs directly to the 
flip-flop "trigger" point (pin "G11 of the IJBE FF-1) . Only one gate output may be used as 
a "trigger" . The basic wiring for "triggering" is shown below: 
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7. 4 GA TE OUTPUT "TRIGGERING" AND DIRECT DISPLAY (Continued) 

e +6 .- e +6 e- fi ------- ------
~ ~ Ae 
A B C A B C Be 

c e 
G 

ne 
G Ae 

D E F D E F 
Be 

~ ~ ce 
ne 

FF-1 FF-1 AND-1 
OR-1 
A0-1 

In this configuration, the left FF-1 is controlled by gate #1 output and the right FF-1 
is controlled by the gate #2 output. Note that FF-1 pins "A" and "C" and "D" and "F" 
must be wired together for "triggering". The gate outputs can also be used to "trigger" a 
shift register or several other FF-1 flip-flops simultaneously. If the above gate were an 
A0-1, the logic representation of the above diagram would be as follows: 

t!1 

ra 

If a gate output is wired directly into pin "E" of an FF-1 flip-flop, the flip-flop light 
will display the DIBECT OUTPUT of the logic gate . This applies to all types of logic gate 
outputs . In this case, the flip-flop is not "triggered.11 but is driven directly by the gate out­
put. No other flip-flop connections (except power) are necessary. Note the DIRECT 
OUTPUT DISPLAY configuration below: 
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7.4 GATE OUTPUT "TRIGGERING" AND DffiECT DISPLAY (Continued) 

e +G e - e +6 e- • _..,.. ______ ------
e Ae e e e e e Be 

DIRECT A B C DIRECT A B C ce 
OUTPUT OUTPUT De 

DISPLAY Ge DISPLAY Ge 
OF OF Ae 

GATE #2 Be 
GATE #1 D E F D E F ce • • • • ne 

FF-1 FF-1 0-1 

OR-1 
AO-1 

Assuming again that the gate in the example above is an A0-1, the logic representation 
of the above diagram would be as follows: 

•ee 

• 
eee 

• 
A gate is not designed to be used both as a "trigger" to a flip-flop and a direct output 

flip-flop display at the same time. 
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8. ELECTRONIC COMPUTER CffiCUIT OPERATION 

Now that we know computer logic and the computer electronic circuits which make up 
this logic, we are now ready to use these basic building blocks to build up computer wiring 
projects by using these appropriate blocks over and over again. This chapter bridges the 
realm of theory from the previous chapters to the world of true applications of this theory. 
However, other things have to be discussed, such as CAUTIONS, physical mounting and 
connections, explanation of logic and wiring diagrams, power sources, and potential 
problems that may occur during operation. Also, discussion is necessary on "senses" and 
"commands", and "set" and "reset" capabilities. 

8.1 CAUTIONS I 111 

If you have built (or bought} the electronic circuits described in this book, the following 
cautions should be observed in order not to cause unnecessary failure of your units. 

1. DO NOT EXPERIMENT ON METAL SURFACES. The reason should be obvious. 
Conducting metal can short out printed circuit board traces or other exposed connections on 
the units. 

2. BE CAREFUL OF THE "HOT" +6 VOLTAGE WIRES. If "+6" voltage hits pins A, B, 
D, or E on the flip-flop, either pulse generator output pin, or any gate output pin, immediate 
destruction of the units will result. This is also true if "+6" directly touches some other 
parts on these circuits. 

3. AVOID CARELESS WIRING. Be sure that all voltage wires are properly connected 
to only the proper voltage pins. Sometimes,however,there may be direct voltage connections 
only to pins C and F of a flip-flop. These are the only two pins on any of the circuits (other 
than the voltage pins} that can accept direct voltage. If and when voltage connections to pins 
C and Fare required, be sure that these are the only connections made to these pins! 

4. 00 NOT USE EXCESS VOLTAGE. These units were designed to run on 6 volts for 
maximum efficiency. However, satisfactory operation can be obtained with 8 volts, but 
this shortens the life of the lamps on the flip-flops slightly. The circuits can be operated 
up to 20 volts, but voltages in excess of 9 volts are not recommended. 

5. REMOVE POWER WHE wmING OR CHANGING CONNECTIONS. All it takes is 
one slip of a hot "+6" wire to destroy your units. Other wires accidently touching hot 11+6 11 

voltage connections will yield the same destructive results! 

6. 00 NOT POUND, DROP, OR CAUSE PHYSICAL SHOCK TO EITHER MOUNTED 
BANKS OF UNITS OR INDIVIDUAL UNITS. This may result in broken lamp filaments, or 
severing of the very fine microconnections inside the individual transistors and diodes 
which comprise these circuits. Avoid pounding in nails to mount your circuits. Use tacks 
or screws. Above all, be careful that the units do not drop on the floor. 

8. 2 PHYSICAL LAYOUT, MOUNTING, AND CON ECTIONS 

The individual flip-flop, pulse generator, dual 4-input "OR" gate, dual 4-input "AND" 
gate, and the 4-input "AND" and "OR" gate are commercially available as FF-1, AM-1, 
OR-1, AND-1, and AO-1, respectively, from LIBE COMPANY. The FF-1 is built on a 
2 1/ 2" x 4" printed circuit board with top and bottom mounting holes v bile the AM-1, OR-1, 
AND-1, and AO-1 are on 2" x 4" printed circuit boards with top and bottom mounting holes. 
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8. 2 PHYSICAL LAYOUT, MOUNTING, AND CONNECTIO S (Continued) 

If the reader wants to build his own circuits, it is suggested that these measurements be 
maintained when using printed circuit boards. The pin (or terminal) input and output 
locations should also be consistent with those of the commercially available units. 

The beginning experimenter can build his own circuit on matrix board (vectorboard) 
with low cost surplus parts. These matrix boards should be designed to be screwed into 
a wooden mounting board. We will leave the method of building the units up to the experi­
menter's own preferences. However, the connection points (pins or terminals) on each 
similar unit should be consistent from one unit to another. It is also suggested that, when 
building logic gates, use four (4} inputs for each gate. 

8. 2. 1 MOUNTING BOARDS 

A wooden board covered with an attractive coat of spray paint makes an excellent 
mounting and display board. The simplest mounting method consists of screwing the units 
directly on the board and making wiring connections from the front. However, if permanent 
wiring is desired, holes can be drilled in the board (remove units from board first) so that 
wiring can be done from the back. As a starter, a 16'' x 32" piece of plywood about 1/2 to 
3/4 inch thick is suggested. All units should be mounted with the power pins on top. The 
flip-flop light should also be at the ,!:2.E. of the unit. Be sure to mount all units before doing 
any wiring. 

8. 2. 2 wmES 

You will need many, many wires I A fair estimate is five wires per every electronic 
unit used. If temporary experimental wires are desired, small alligator clips soldered on 
each wire end are recommended. Suggested wire lengths are: 8 inches, 16 inches, 24 
inches, and 32 inches. If a large number of wire lengths are to be made up at one time the 
following percentages are estimated for the quantity of wires needed of the above four 
lengths: 80%- 8 inches, 15%- 16 inches, 3%- 24 inches, and 2%'- 32 inches. Usually, 
8-inch and 16-inch lengths will suffice. Wire lengths can also be made up as needed. If 
permanent soldered wire connections are desired, then the wires, only need b stripp d at 
each end and made ready for soldering. Otherwise, small alligator clips should be mounted 
and soldered onto each end. Sometimes it is feasible to solder on only all the power wire 
connections. By using alligator clips, multiple connections can be made at a single point 
by the clip-on-clip method. 

The DIODE wmE is a wire with a diode spliced into the middle of it. Usually the 8-inch 
wire is best for the DIODE WIRE. 

8. 2. 3 LABELS 

After completing a wiring project, it always helps when a project is properly labeled-­
especially when explaining it to someone else, or for demonstration purposes. The following 
labels are suggested: 

1. Label each flip-flop (above the light) as 11111 , "2", u4••, "8", 1116", etc . to define 
what number it represents. These numbers can then be added up when the lights 
are "on" and ignored when the flip-flop lights are "off". 

wigfi
Stolen 2 Line Transparent
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8. 2. 3 LABELS (Continued) 

2. Label each flip-flop register such as 11ADDEND REGISTER 11, 11ACCUMULA TOR 
REGISTER11 , etc. These are shown in the respective logic diagrams for the 
wiring projects. 

3. Label other functions such as 1'MULTJPLICAND CONTROL", 11HALT COMMAND", 
11SAMPLE-AND-HOLD LOGIC", etc., as necessary. These are also shown in the 
respective logic diagrams. 

8. 3 LOGIC DIAGRAMS AND WIRING 

The projects in the next two chapters are all illustrated by the use of logic diagrams. 
The symbols for the flip-flop and pulse generator are explained in the previous chapter . 
The gates are shown individually and not in the 11dual" configuration. The gate symbols are 
also explained in the previous chapter. All dots within the symbols represent points of 
possible connection. All lines, whether curved, straight, or "cornered", represent WIRE 
CONNECTIO S. o power connections are shown in the logic diagrams. However, power 
connections must be made on each and every unit individually in order for it to operate. 
The logic diagrams, in effect, explain what to do only after the power connections have 
been made. The DIODE WIRE is represented as follows: 

Now let us look at a sample logic diagram and explain each point in the figure. In the 
wiring, all lines which cross ( I } are not connected unless there is a dot at the inter­
section(+ >· 

flip-flop 

(diode wir catbod 
'-... _/' end 

pulse 
generator 

conn tion to "ground" 
voltag pin 

ction to"+6~voltage pi 

flip-flop refer nc designations 

"OR" gat 

flip-flop 
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8. 3 LOGIC DIAGRAMS AND Wm.ING (Continued) 

The flip-flops are shown w~h lamp on top. For flip-flop A2, the top half is the 11A 211 

half and the bottom half is the "A " half. The "gate" symbols may be shown oriented in any 
direction, but the configurations for the flip-flop and pulse generator are only shown with 
the output pins facing left and the input pins facing right. Gates will be shown as often as 
possible with output pins facing left and input pins facing right, but sometimes it is 
necessary to reverse orientations or face the symbols at 90° angles in order to simplify 
wiring connections. If using commercial LIBE FF-1, AM-1, AO-1, AND-1, or OR-1, then 
the outputs will face always left and inputs right when the power pins are mounted on top. 
The 11+6" power pins are marked with a red dot. 

8. 3. 1 POWER PIN CONNECTIONS 

Again we remind the reader that all power pin connections must be made on each and 
every unit. If the power pins were shown in the logic diagrams, they would always be on 
top. Now let us include the power pins in a modified logic diagram and show how the con­
nections are made: 

+6 

ra r.1 • 

It should be apparent that including power wiring in logic diagram will only further confuse 
the complicated diagram. 

8. 4 POWER SOURCES 

A large 6-volt battery is recommended (preferably a double- size lantern type) for 
projects which require 10 flip-flops or less . These batteries are easily obtained in hard­
ware, variety, or general merchandise stores. The "off1' state flip-flop current, pulse 
generator current, and gate current are negligible (about . 006 amp, with . 036 watt power 
consumption except for the gates which draw. 012 amp, with . 072 watt power consumption 
for each gate). However, the "on" state fl.ip-flop current is very high (about .125 amp, 
• 750 watt power consumption for each unit) because of the lamp display. 

Flip-flops in the "on" state will cause a noticeable drain on the battery. When the 
battery is being overloaded, all the "on•• flip-flops will dim considerably when another flip­
flop turns "on". 

A 6-volt, 2 to 3 amp D. C. power supply is ideal. More than one power supply can be 
used for larger projects . The following 1'brute force 11 power supply circuits are adequate 
for use with the computer circuits and can easily be built up from surplus parts. 
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8. 4 POWER SOURCES (Continued) 

110V 

LINE 

2-AMP POWER DIODES 

CRl 

Tl 

CR2 

TRA SFORMER, FILAME T 
12V, 2 AMPS, CE TER-TAP 

Cl 

+6 

CAPACITOR, 
ELE TROLYTIC 
10, 000 µf (minimum), 
10 voe 

CIRCUIT # 1 

2-AMP POWER DIODES +6 

uov 
LINE 

Tl 

TRA SFORMER, FILA.ME T 
6V, 2 AMPS 

Cl 
CAPACITOR, 
ELECTROLYTIC 
10,000 µf (minimum), 
10 VDC 

CIRCUIT # 2 

Both of the above circuits represent unregulated power supplies and therefore actually 
put out more than 6 volts. The output is about 8 volts, but they are simple, easy to build, 
and will do the job. 

8. 5 SENSES AND COMMANDS 

The uses of "SENSES" and 11 COMMANDS" will be employed widely in the next two 
chapters on wiring projects. Let us first define the difference between the two. The 
"COMMAND" causes a computer operation to take place such as a flip-flop change of state, 
an addition, subtraction, or a lfhalt". A "SENSE" controls the execution of a command and 
is used only in the advanced projects. For instance, we can sense whether a register con­
tains a number or does not (digit sense) or whether a flip-flop is a 11111 or a "0". 

The most important command comes from the pulse generator and causes the other 
circuits in turn to generate their own commands . 

The next most important command is the "halt'' command which is needed to stop an 
operation. The logic diagram for the "halt1' command is as follows: 
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8. 5 SENSES AND COMMANDS (Continued) 

ra 

PULSE 
OUTPUT 

63 

The pulse will be present only when the flip-flop is "on'' and will be suppressed when the 
flip-flop is "off". 

Two command generator counters are shown below for reference only. They are com­
posed of "A D" gated binary counters and will generate as many different commands as 
the counter can count to. A 2-bit counter will generate 4 commands and a 3-bit counter 
will generate 8 commands. These commands can be controlled by senses if necessary. 

2-BIT COMMA D 

GE ERA TOR CO TER 

• 

3-BIT COMMA D 

GE ERA TOR COU TER 
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8. 5 SE SES AND COMMANDS (Continued) 

The "sense" most often used is the output of a flip-flop. This flip-flop output can then 
be used to control a command. The next most often used "sense" is the digit sense {to sense 
a number in a register) . This consists of only one "OR" gate whose inputs are fed by the 
"true" outputs of all flip-flops in a register . The logic diagram for a 4-bit digit sense is 
shown below: 

•• 

••• ••• • •• • •• 
8, 6 SET AND RESET 

It is possible to add a "SET" and "RESET'' capability to all projects in the next two 
chapters as an extra feature by using diode wires (or diodes, if soldered in). Diodes are 
connected to the bottom flip-flop center pin (pin E) for "SET" and to the top center pin 
(pin B} for reset. The diodes are fed through switches which feed 11+6" voltage through a 
lK resistor {DO OT FEED DIRECT "+6" VOLTAGE FOR SET AND RESET! 11 !). The 
individual "set" and "common reset" connections are shown in the figure below for one 
flip-flop register. These capabilities are not included in, any of the logic diagrams, but 
may be added to each and every computer project as an extra feature. 

"A " 4 "A " 
3 

"A II 

2 
"A II 

1 

SET SET SET SET 

lK CURRE T- LIMITING RESISTOR 
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8. 6 SET AND RESET (Continued) 

All switches are "normally-open" miniature pushbutton switches . The "set" capability is 
not recommended for a "DOWN" counter register because of the fact that a ''set" of one 
flip-flop will always trigger the next flip-flop over (to the left). How ver , there are no 
problems with the "set11 for "UP'' counters and shift registers . The "common reset" will 
work on all types of registers (i.e. , ''UP" and "DOWN" counters and shift registers) . 

8. 7 INTRINSIC PROBLEMS AND DEBUGGING 

You have carefully wired up a logic diagram project, but for some reason the project 
will not work . There may be extraneous pulses or improper triggering. A bit will not 
shift on a shift register or a counter may not count properly. A gated logic circuit might 
work improperly or might not work at all . When these symptoms appear, the reader should 
refer to this section for help . This means that we must go through a "DEBUGGING" stage. 
Usually there will be no problems with the simple counters, adders, and shift registers. 
However, on more complex projects, these problems may show up . 

"DEBUGGING" comes from the slang word "bug" which means "problem'' (you have 
probably heard the phrase "get the 'bugs' out" several times) . Well, in electronics we 
have many, many "bugs" that may appear and we may spend several hours "troubleshooting" 
to get them out. When problems do occur, the following is a suggested ord r of steps to be 
followed: 

1. DOUBLE CHECK ALL WIRING. Be sure that all connections have been made 
properly, that connections are not missing, and that extraneous connections have not been 
made. Sometimes it is possible to locate the vicinity of the problem by watching the unit 
operate. Be sure also that isolated connections are not shorting together--especially when 
using alligator clips . 

2. REMOVE A D CHECK OUT INDIVIDUAL UNITS IN THE VICINITY OF THE 
PROBLEM. You may have a burned out gate or flip-flop. If you think you have a marginal 
unit which is not working properly, replace it with a similar unit to be sure. Be sure that 
there are no cold solder joints and that the connecting pins (or terminals) ar making 
proper contact with the back of the printed circuit board. 

3 . CHECK THE ALLIGATOR CLIP WIRES (when used). There is the possibility of a 
cold solder joint where each clip is soldered to the wire end. If wiring connections have 
been permanently soldered in, check for cold solder joints by wiggling the wire(s) in 
question. If there is some doubt, then reheat and resolder. 

4. CHECK THE POWER SUPPLY (when used) . Be sure that it is operating properly 
and is not throwing out line "spikes" or does not have burned out rectifier diodes or a 
burned out filtering capacitor . A faulty power supply will not allow the computer units to 
work properly . 

5. BE SURE THE UNITS ARE- NOT NEAR INTERFERENCE SOURCES. Electrical 
appliances, el~ctric blankets, refrigerators, and operating electric band drills or electric 
saws are notorious for throwing out interference spikes that will be picked up by the flip-­
flops. An electric arc or heavy-current switch will also cause problems. A distance of 
about 20 feet should be maintained from the above interference sources if there appears to 
be a problem. If there is A. C. line noise in the power supply, the power supply should be 
"isolated" by use of either a "variac" variable voltage transformer or a line isolation 
transformer . This kind of interference problem is usually rare, but it does exist. 

If all the above steps fail to debug the wiring project, then we have entered the nebulous 
area of INTRINSIC PROBLEMS. If all units check out properly individually and all other 
possibilities of wiring errors, cold solder joints, and interference have been eliminated, 
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8. 7 INTRINSIC PROBLEMS AND DEBUGGING (Continued) 

but the wiring project will still not function properly, we have an INTRINSIC PROBLEM. 
In other words, the units should function, but do not. We can only offer some suggestions 
for debugging such problems. Sometimes nothing will help and a wiring project may have 
to be redesigned or rebuilt with new units. If an intrinsic problem appears, proceed with 
the following steps: 

1. WIB.E IN MULTIPLE POWER CONNECTIONS. This should be done especially in 
the area where the problem seems to be. At times, when power has to travel through too 
many wires, a small resistance is created. Since the flip-flops change state in about 1 
microsecond, this may cause a very small instantaneous power drain along the power wires. 
This power drain or 11pull-down" gets worse as the distance increases from the main power 
connections and sometimes the flip-flops are sensitive enough to detect this. If the probes 
of an oscilloscope were placed across the power leads a considerable distance from the 
main power connections, these "pull-down" periods can be observed as definite "spikes" 
during operation. Other times, inductive and/ or coupling effects may be the cause. Try 
wiring every third or fourth flip-flop with direct redundant power connections. Sometimes 
only one additional set of power connections may help. An alternative is to try making the 
single power connections at different points. Also, a third alternative is to wire in 
DECOUPLING CAPACITORS of at least 1 microfarad directly across the power pins in the 
area where the problem is occurring. 

2. INTERCHANGE SIMILAR UNITS. Sometimes two units will not work properly with 
each other, but will perform normally elsewhere in the wiring project. Remove and re­
place any suspected marginal units. Sometimes this marginal interaction or accumulative 
tolerance is the cause of the problem. 

3. ELIMINATE LOGIC GATES WHENEVER POSSIBLE. When a flip-flop signal passes 
through more than three logic gates, sometimes there is a s low-down of a flip-flop pulse 
and it will not "fall" fast enough to trigger a flip-flop. Other times some peculiar combin­
ations of "AND" and "OR" gates will produce extraneous pulses. Sometimes merely 
changing gates around (or changing ''AND" and "OR" logic around) will remedy the problem. 

4. AVOID DRIVING TOO MANY OTHER UNITS WITH A SINGLE GATE OR FLIP-FLOP. 
The circuits in this book should be capable of driving at least 10 other units. If it is 
absolutely necessary to drive more than 10 units with a single gate or flip-flop, the driver 
unit should be modified by changing the voltage dropping resistors (usually Rl and R2) from 
1K to soon . 

5. SffiFT REGISTER UNITS MAY NEED TO BE MODIFIED. If bits fail to transfer 
properly in a shift register even after switching flip-flop tmits around, the flip-flop tmits 
may be modified as follows: Change R2 from 560 ohms to 200 ohms and/ or decrease R5 
and R6 from lOK to 4. 7K. This modification will clear up most shift register intrinsic 
problems--especially when the shift register flip-flops are driving several logic gates. 

Finding remedies for intrinsic problems is a very important phase in the manufacture 
of all large commercial electronic computers. This is also part of the "fun" of building 
your own computer and should give you some insight to problems encountered in the com­
mercial computer industry. Again, when problems occur, refer back to this section! 

8. 8 CARE AND REPAIR OF UNITS 

When soldering permanent connections to pins, be sure that any "swedged" or 
"friction-contact" pins or terminals are also soldered to the trace of the printed circuit 
board (when applicable) . This will prevent intermittent connections due to soldering heat. 
Also, when making repairs or modifications on units on printed circuit boards, avoid 
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8. 8 CARE AND REPAIR OF UNITS (Continued} 

overheating copper traces . Avoid pulling or twisting parts so hard that traces will be 
either pulled loose or broken. 

67 

An ohmmeter, when used on the ''Xl0" scale, makes a very effective trouble-shooting 
device. About 99 . 5% of all failures of units can be attributed to transistors, diodes, or 
lamps. In many cases, the blackened color or broken filament of a burned out lamp is 
obvious. However, when in doubt, an ohmmeter will register "short" for a good lamp and 
"open" for a bad one. The diode will conduct in only one direction. If a diode failure is 
suspected, place the ohmmeter leads across the diode in one direction and then reverse 
the leads and place across the diode in the other direction. A good diode will show a 
resistance of about 1000 ohms (silicon junction) or 200-500 ohms (germanium junction) in 
one direction, and as "open" in the other direction. A ''leaky" diode will show some 
resistance in both directions. A "shorted" diode will show up as "short" in both directions, 
and an "open" diode will show up as "open" in both directions . Replace all "leaky", 
"shorted", and ''open" diodes. 

Transistors may also be checked with an ohmmeter . The transistor consists of a 
'collector", "base", and "emitter". The most common configuration for transistors, with 
leads facing out from the paper, is as shown below: 

COLLECTOR --..... 

BASE 

EMITTER 

While the results of transistor checks on an ohmmeter are more uncertain than those 
of a lamp or diode, they still give a reasonable indication of a good or bad pa.rt. We st.art 
the check by holding an ohmmeter lead on the BASE and checking for resistance between 
B & C and B & E . Reverse the ohmmeter leads and check again for resistance between 
B & C and B & E. Then check for resistance between C & E and reverse ohmmeter leads 
and check again for resistance between C & E. A good transistor will show a junction 
resistance (about 1000 ohms for silicon or about 200-500 ohms for germanium) between 
B & C and B & E in one direction (with same lead on B), and as "open" between B & C and 
B & E in the other direction. The resistance between C & E in both directions should be 
"open"; however, in some germanium transistors a resistance of about l0K in one direction 
is acceptable. A "shorted" transistor will show up as "short" in at least one measurement. 
An "open" transistor will show up as "open" in all measurements. A "leaky" transistor 
will show some resistance in both directions of the B & C and B & E measurements and/or 
resistance in both directions of the C & E measurements. If the C & E resistance is low in 
one direction (less than 10,000 ohms), then the part should be changed. Replace all "open", 
"shorted", and leaky transistors, 

Do not operate repaired units immediately alter soldering. Let the soldered junctions 
cool down for at least two (2) minutes. 

wigfi
Stolen 2 Line Transparent
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9. BASIC NON-GATED COMPUTER PROJECTS 

The projects in this section show all basic flip-flop operations without the use of any 
logic gating. These projects are fairly simple and should be wired up first before attempting 
the more difficult ones in the next section. Explanations are shown using four flip-flops for 
each register. However, there is no limit to the number of flip-flops that can be used. Note 
the wiring of the middle flip-flops. Extra flip-flops can be wired into the middle in the same 
manner. As an example, it is possible to have a 10-bit "up" counter by wiring in 6 extra 
flip-flops . Again, be sure that proper connections are first made to all voltage pins to 
provide power to each unit. Suggested parts lists are included only for projects in this 
section. The flip-flops are labeled with designations such as "Ai", "A3", "A2", "Al", etc., 
for reference with projects in the next section. 

9. 1 THE BINARY "UP" COUNTER 

The binary "up" counter will count upward in order from 1 through 15 (for the 4-bit 
example shown below), and then reset (clear) itself and start over again. The logic diagram 
for a 4-bit binary "up" counter is as follows: 

t!1 

r.. r.. r.. 

Suggested parts list: 

4 Flip- Flops (FF-1) 

1 Pulse Generator (AM-1) 

22 811 wires (clip-on wires) 

9. 2 THE B ARY "DOWN" COUNTER 

• 

The binary "down" counter will count downward (backward) in order starting from 15 (for 
the 4-bit example shown below) down to O and then start over. The logic diagram for a 4-bit 
"down" counter is as follows: 
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9. 2 THE BINARY "DOWN" COUNTER (Continued) 

~ 

Suggested parts list: 

t!J t!1 

4 Flip- Flops (FF-1) 

1 Pulse Generator (AM-1) 

22 811 wires (clip-on wires) 

9. 3 THE BINARY SHIFT REGISTER (LEFT) 

69 

• 

The binary shift register (left) will shift any binary number entered to the left and do 
an "end-around" shift from the last flip-flop to the first. For example, consider the 4-bit 
number 0001. Shift once: 0010. Shift twice: 0100. Shift three times: 1000. Shift four 
times: 0001 (starts over). Another example: 0011, 0110, 1100, 1001, 0011 ..... The 
pulse generator controls the shift rate. A fast pulse will cause a fast shift, while a slow 
pulse will cause a slow shift rate. The logic diagram for a 4-bit binary shift register (left) 
is as follows: 

Suggested parts list: 

4 Flip- Flops (FF-1) 

1 Pulse Generator (AM-1) 

20 8" wires (clip-on wires) 

2 16" wires (clip-on wires) 
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9. 4 THE BINARY SHIFT REGISTER (RIGHT) 

The binary shift register (right) will do essentially the same as the "left" shift, but 
will shift to the right instead of the left. For example, consider again the 4-bit number 
0001. Shift once: 1000. Shift twice: 0100. Shift three times: 0010. Shift four times: 
0001 (starts over). Another example: 0011, 1001, 1100, 0110, 0011.... . The direction 
of shifts is determined by the director outputs. If the director outputs connect to the 
follower inputs immediately to the left, the shift will be to the left. If the director outputs 
connect to the follower inputs immediately to the right, then the shift will be to the right 
(as in this case). The logic diagram for a 4-bit binary shift register (right) is as follows: 

Suggested parts list: 

4 Flip-Flops (FF-1) 

1 Pulse Generator (AM-1) 

20 811 wires (clip-on wires) 

2 1611 wires (clip-on wires) 

9. 5 THE COMPLEMENTARY TRANSFORMATION REGISTER 

The complementary transformation register is merely a shift register with the "end­
aroun~" shift connections interchanged. The register should receive only as many pulses 
as there are ''bits" and the pulse should be removed after the proper number of triggers. 
The 4-bit register requires four trigger pulses which will change (transform) any binary 
number into its complement. Consider again the example 0001. The following series of 
shifts will take place with each number inverting at ~sition Al in a modified left-shift 
register: 0001, 0011, 0111, 1111, 1110. We start at 0001 and four pulses later we have 
1110. The logic diagram for a 4-bit complementary transformation register is as follows: 
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9. 5 THE COMPLEMENTARY TRANSFORMATION REGISTER (Continued) 

Suggested parts list: 

4 Flip-Flops {FF-1) 

1 Pulse Generator (AM-1) 

20 8" wires {clip-on wires) 

2 16" wires (clip-on wires) 

9. 6 THE NON-GATED BINARY ADDER 
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In designing this simple bi.nary adder, we combine both the binary "up" and "down" 
counters {to form two registers) and use a "HALT11 command flip-flop to control the pulse. 
The top register, which indicates the answer, is called the ACCUMULATOR. The bottom 
register is called the ADDEND REGISTER (where the numbers to be added are entered). 
The flip-flop on the bottom is connected to the pulse generator by means of a diode wire 
(be sure that the diode faces in the proper direction-the 11line" marked side of the diode 
is negative and goes directly to the flip-flop). When the "HALT" flip-flop is in the 11011 

state, the pulse is stopped. When the addition is completed, the 11true" side of the last 
flip-flop in the addend register will trigger the 11HALT" flip-flop and stop the pulse. 

The number to be added is entered into the ADDEND REGISTER. Then touch the two 
pins together (shown with arrows) on the "HALT" flip-flop and the light will come on and 
start the addition process. The light will turn off when the process is completed and the 
answer will appear in the accumulator. The ADDEND REGISTER has automatically 
cleared and the next number can be entered for addition. 

To clear the accwnulator, add to it that nwnber which is equal to its complement + 1. 
That is, starting from the right, enter a 11111 in the first flip-flop opposite the flip-flop in 
the ACCUMULATOR that has the first light on. After that, enter 1111 s 11 only opposite zeros 
in the ACCUMULATOR. The resulting addition will clear all the registers. The logic 
diagram for a 4-bit adder is as follows: 
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9. 6 THE NON-GATED BINARY ADDER (Continued) 

"DOWN" COUNTER ACCUMULATOR 

t!f t!f 

r.. 

"UP" COUNTER ADDEND REGISTER 

Suggested parts list: 

11HALT" 
COMMAND 

9 Flip-Flops {FF-1) 

1 Pulse Generator (AM-1) 

45 811 wires (flip-on wires) 

1 161' wire (clip-on wire) 

1 diode wire (clip-on wire) 

9. 7 THE NON-GATED BINARY SUBTRACTER 

• 

The principle of the subtracter is almost the same as that of the adder, except that 
both upper and lower registers are 11up11 counters . The bottom register is now called the 
SUBTRAHEND REGISTER. 
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9. 7 THE NON-GA TED BINARY SUBTRACTER (Continued) 

To subtract, enter a number in the ACCUMULATOR. Then enter the number to be 
subtracted in the SUBTRAHEND REGISTER. Touch the two pins together (shown with 
arrows) in the "HALT" flip-flop and the light will come on and start the subtraction process. 
The light will turn off when the subtraction is completed and the answer will appear in the 
ACCUMULATOR. The SUBTRAHEND REGISTER has autnmatically cleared and another 
number can be entered for subtraction. 

To clear the ACCUMULATOR, subtract the number that is in it. That is, enter that 
same number in the SUBTRAHEND REGISTER. The resulting subtraction will clear all the 
registers. The logic diagram for a 4-bit subtracter is as follows: 

"UP" COUNTER 

"UP" COUNTER 

Jet 

Suggested parts list: 

9 

1 

45 

1 

1 

ACCUMULATOR 

SUBTRAHEND REGISTER 

"HALT" 
COMMAND 

Flip- Flops (F F-1) 

Pulse Generator (AM-1) 

8" wires (clip-on wires) 

1611 wire (clip-on wire) 

diode wire (clip-on wire) 

c.. 

• 
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10. ADVANCED COMPUTER PROJECTS 

The projects shown in this chapter are not meant to be easy, but to show how various 
operations are performed within a computer. The arithmetic processes of addition, 
subtraction, multiplication, division, and square rooting are shown here. There are also 
various other projects such as the BCD counter, time machine and electronic dice. 

All projects in this chapter contain logic gating in one form or another, using "AND" 
and "OR11 gates, whereas the previous chapter did not. It is up to the experimenter to 
determine his own parts lists and mounting displays. 

10. 1 THE BINARY CODED DECIMAL (BCD) COUNTER 

The binary coded decimal (BCD) counter is a very basic application to get a feel for 
logic gating. This counter is quite commonly used in producing decimal number conversions 
from binary. The BCD counter uses 4 binary flip-flops to count to 10 (instead of 16 for a 
normal binary counter). The gate logic for the BCD counter is as follows: 

BCD COUNTER LOGIC 

Only 2 11AND" gates and an 11OR" gate are needed (in the above version) to convert a 
basic 4-bit counter into a BCD counter. The counting sequence will be: 0000, 0001, 0010, 
0011, 0100, 0101, 0110, 0111, 1000, 1001, and reset to 0000. Other binary coded logic 
counters can be obtained by changing the location of the logic gates. Further experimenta­
tion is left to the reader. 

Let us analyze the logic involved in the BCD counter. First of all, we must start the 
count with all flip-flops reset to 0000. Note that the ''FALSE" output of the 118" flip-flop is 
now "ON" since the flip-flop is a "011

• When the 11111 flip-flop comes on with a pulse from 
the AM-1 pulse generator, we have the first ''AND" gate with two inputs that are "ON11• The 
11AND" gate is now "ON". The next pulse turns the "1" flip-flop off. This, in turn, will 
turn off the "AND" gate and transmit a "DOWN-SWING TRIGGER" signal to the "2" flip-flop. 
We now have 0010. The next pulse turns the "1" flip-flop on again for 0011. Again the 
"AND" gate is "ON". The next pulse will turn the "1" flip-flop off again and the "AND" gate 
will once more be "OFF". This transmits another "DOWN-SWING TRIGGER" to the "2" 
flip-flop which will turn off and trigger the "4" flip-flop which will come on. We now have 
0100. The 11411 flip-flop is a direct input to the "OR" gate which is now 11ON" with one input 
"ON11

• 
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10. 1 THE BINARY CODED DECIMAL (BCD) COUNTER (Continued) 

Again we repeat the above sequences for 0101, 0110, and 0111. The next pulse will 
reset the "l", 11211

, and "411 flip-flops to 11011
• When the "411 flip-flop is reset to "0", the 

"OR" gate turns off and produces a trigger to the ''8" flip-flop which turns on for 1000. 
Now we have a different situation. The 11811 flip-flop is now "ON" and the ''FAI.SE" output 
to the first "AND" gate is now "OFF", which means that the first "AND" gate can not turn 
on while the 11811 flip-flop is a "111• The next pulse will produce 1001. Now observe that 
the second "AND" gate has both inputs "ON" and is now turned on. This in turn produces 
an "ON" input to the "OR" gate which also turns on. The next pulse will reset the "l" 
flip-flop back to 11011 which turns the second ''AND" gate off and, in turn, turns off the "OR" 
gate to produce a trigger pulse which resets the 11811 flip-flop back to ''O" and now the whole 
BCD counter is reset to 0000. 

There is one slight drawback to the simplified BCD counter logic discussed above. If 
an erroneous display such as 1010, 1011, 1100, 1101, 1110, or 1111 should occur, the 
"OR" gate will ''hang up" and never turn off by pulsing the "1" flip-flop. As a result, only 
the "1" flip-flop will turn on and off without triggering any of the other flip-flops. To 
prevent this from happening, we must add a third "AND" gate as shown below. The result­
ing modified BCD counter will not "hang up" under any display combination, but merely 
continue counting, reset itself, and start over with a correct BCD counting sequence. 

r.1 r.1 r.1 • 

NON-"HANG-UP" BCD COUNTER LOGIC 

10. 2 THE LOGIC ADDER 

In logical addition, we have four numbers to consider. The first two are A and B, the 
two numbers to be added together. The third is called the "SUM" of A and B and is repre­
sented by "S". The fourth is called the "CARRY" generated by A and B when they are 
added together. Note that the only case for a single number sum to generate a "carry" is: 
1 + 1 = 0, carry 1. The other three combinations (1 + 0, 0 + 1, and O + 0) do not generate 
a "carry". 

Using "AND" and "OR" gates, the logical "sum" Sis represented as follows: 
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10. 2 THE LOGIC ADDER (Continued) 

A 
+B 
s 

S = A+B = (A· B)v(A· B) 

The "carry" is represented as follows: C = A· B 

ce 

Let us represent two flip-flop registers A and B for a 4-bit logic adder as follows: 

REGISTER 
A 

REGISTER 
B 

••• 

••• 

••• 

••• 

• •• 

• •• 

• •• 

• •• 

• •• • •• 

••• • •• 

• •• • •• 

• •• • •• 

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

77 

10. 2 THE LOGIC ADDER (Continued) 

The subscripts 1, 2, 3, and 4 indicate the flip-flop position in each register. Now 
let us consider Al and B1. Outputs "A1 11 and "B111 are generated by the "TRUE" side of 
flip-flops "Ai", and "Bl", respectively. Outputs "Ai" and "Bi" are generated by the 
"FALSE" sides of these respective flip-flops. 

FLIP-FLOP "B1" 

In logical addition, flip-flops A1 and B1 1n both registers A and B may be specially 
treated since they represent the least significant digit and no "carry" can be generated by 
any flip-flops to the right. In other words, the "carry11 which we will call "C0 11 , is always 
"0" and the invert "Co" is always 11111 • Therefore, using the general logic equation for the 
sum of three numbers A, B, and C, we may simplify both the "S" and the "C" for the first 
digit. 

S = A +B + C 
1 1 1 o 

S = (A · B · C )v(A · B · C )v(A · B · C )v(A · B · C ) 
1 llo llo llo llo 

Set C = 0 and C-- = 1 
0 0 

s1 = (A1 · B1 · 0)v('\ · B1 · l)v(A1 · B1 · l)v(~ · B1 · 0) 

s1 = (0)v(A1 · 1\ · l)v(A1 · B1 · l)v(0) 

S = (A • B · l)v(A · B • 1) 
1 1 ..J WWW 1 1 

~1 = (Al· Bl)v(Ai' B1> I 

C1 = (A1· B 1)v(A1• C0 )v(Bi' C0 ) 

Set C = 0 
0 

C1 = (A1 · B1)v(A1 · 0)v(B1 · 0) 

c1 = (Al· B1)v(0)v(0) 

1c1 == A1· Bd 
From the calculations above, we can represent addition on the LEAST SIGNIFICANT 

DIGIT by the following logic: 

wigfi
Stolen 2 Line Transparent
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10. 2 THE LOGIC ADDER (Continued) 

Cl e----te 

<\ ----..... 
(Input to the next digit) 

A 

B 

For intermediate positions such as A2 and B2, A3 and B3 , we have (using as an 
example A2 and B2) the follo ing logic: 

s2 = A2 + B2 + cl 

Sz= (A 2• B2• C1)v(A2· B2• <\)v (A.2- B2• c 1)v (A2· B2• c 1) 

The "TRUTH TABLE" for the intermediate positions A2 and B2 is as follows: 

A2 B2 Cl s2 c2 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

From the preceding equations, we can represent the intermediate digits by the follow­
ing computer logic : 
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10. 2 THE LOGIC ADDER (Continued) 

<\ 
Cl 

A2" B2· Cl A2 

B2 

A2" 132" <\ •• 
s2 A2 

A2° B2· <\ 
•• 

X2· B2· c1 

A2· B2 

•• 
c2 

A2· Cl 

B2 •• c2 B2·C1 

Cl 

Note that the 11carries'' C1 and C1 are from the previous register digits (i.e., to the 
right) and that "C21' and "C2" are the inputs for the next position over to the left. The 
logic clrcuitry which generates only the "sum" and not the "carry" is called a HALF 
ADDER. Thus, the three "AND" gates and "OR" gate which generate S2 above are a HALF 
ADDER. The complete logic above which generates both the "sum" and "carry" is called a 
FULL ADDER. 
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10. 2 THE LOGIC ADDER (Continued) 

The complete 4-bit logic adder is shown in the figure below: 

• : ,,r 

• • .. 
• "' 

• • ,,,"' • 

• . "' . "' 

• 
• 

<"'-------------------++--><~----~--,1.-------

., 
< 

a{' 1<" 

. 
< 

~ 
A 
A 
< 
C) .... 
C, 

g 
E-< .... 
i:1:1 

I 
"d' 
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10. 2 THE LOGIC ADDER (Continued) 

Note that the readouts consist only of flip-flops wired up in the "direct readout" 
configuration. The first four flip-flops s

1
, s

2
, s

3
, and s

4 
read out the direct output of the 

final "0R11 gates of S , S , S , and s
4

. The last sum S is read out directly from carry 
1 2 3 5 

c4. 
When the full logic adder is put into operation, the answer will appear in register S 

for any addition problem as soon as the binary digits are entered into registers A and B. 
There are no intermediate steps and the answer is always instantaneous. The flip-flops 
in registers A and B may be further wired into separate pulsed (or common-pulsed) "up" 
or "down" binary counters to give a continuous display of all the addition possibilities. 
Each time a register changes value, the answer will change value. The registers A and 
B may also be wired into separate shift registers to obtain a continuous display of the sum 
depending upon the shifted position of the binary numbers in both registers. 

To make an adder larger than 4 bits, merely repeat the connections, logic, and cir­
cuitry as shown in positions 2 and 3 to add as many intermediate bits as necessary. 

10. 3 THE LOGIC SUBTRACTER 

In logical subtraction, we also have four numbers to consider. The first is A, the 
"MINUEND" (the number from which another number will be subtracted). The second is B, 
the "SUBTRAHEND" (the number to be subtracted). The third is called the "DIFFERENCE1' 

of A-B (the answer resulting from the subtraction) and is represented by "D". The fourth 
is called the "BORRQWH, represented by "W", which is generated when B is greater than 
A. Note that the only case for a single number difference to generate a "borrow" is: 
0 - 1 = 1, borrow 1. The other three combinations (0 - 0, 1 - 1, and 1 - 0) do not generate 
a "borrow". 

Using "AND" and "OR'1 gates, the logical "difference" Dis the same as the logical 
"sum" Sand is represented as follows: 

A 
-B 

D 

D = A-B = (A· B)v(A· B) 

The "borrow" is represented as follows: 

W=A·B 

... -~•A 

..,_ ___ B 

w -•~--1E]ie. i---=· : 
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10. 3 THE LOGIC SUBTRACTER (Continued) 

Let us represent registers A and B for a 4-bit logic subtracter as follows: 

REGISTER 
A 

REGISTER 
B 

••• 

••• 

••• 

••• 

••• 

• •• 

••• 

••• 

• •• • •• 

• •• • •• 

• •• • •• 

• •• • •• 
The subscripts 1, 2, 3, and 4 indicate the flip-flop position in each register. Now let 

us consider A1 and B1 . Outputs 11A1" and 11B111 ar~ generated by the "TRUE" sides of 
flip-flops "All'! and "B1", respectively. Outputs "Ai" and "B1 11 are generated by the 
"FALSE" sides of these respective flip-flops . 

In logical subtraction, the binary number in register A must be greater than the binary 
number in register B . The "borrow" is treated much the same way as the ''carry" in 
addition except that we will represent the "borrow" by the letter ''W". Again, we will 
consider the least significant digits A1 and B1. Note that no "borrow" can be generated by 
any flip-flops to the right. In other words, the initial "borrow" which we will call ''W 0 11 , 

is always 110 11 and the invert 11W0 11 is always 11111 • Therefore, using the general logic 
equation for the difference of three numbers A, B, and W, we may simplify both the "D" 
and the ''W" for the first digit. 

D1 = (Al-Bl)-Wo 

D = (A . B , W )v(A · B · W )v(A • B · W )v(A · B · W ) 
1 11 o 11 o 11 o 11 o 

Set W = 0 and W = 1 
0 0 

D1 = (A1 · B1 · 0)v(A1 · B1, l)v(A1 · B1 · l)v(A1 · B1 · 0) 

D1 = (0)v(A1 • B1 · l}v(A1. B 1 · l)v(0) 

D = (A · B · l)v(A . B . 1) 1 1 1 1 1 I Dl = (Al. fl)v(Xi' Bl) I 
W 1 = (A1 · B1)v(B1 • W 0 )v(A1 • W 0 ) 

Set W = 0 
0 

W 1 = (A1 · B1)v(B1 · O}v(A1 • 0) 

W l = (A1 · B1)v(0)v(0} 

(w1 = X1·Btf 
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10. 3 THE LOGIC SUBTRACTER (Continued) 

From the calculations above, we can represent subtraction on the LEAST SIGNIFI­
CANT DIGIT by the following logic: 

~\----­
(Input to the next digit) 

For intermediate positions such as A2 and B2, A3 and B3, we have (using as an 
example A2 and B2) the following logic: 

D2 = (A2-B2)-Wl 

D2 = (A2, B2· W1)v(A2• B2, W1)v(A2• B2, W1)v(A2• Bf W1) 
- -

W 2 = (A2 · B2)v(B2 · W 1)v(Af W 1) 

The "TRUTH TABLE'' for intermediate positions A2 and B2 is as follows: 

A2 B2 Wl D2 w2 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 
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10. 3 THE LOGIC SUBTRACTER (Continued) 

From the preceding equations, we can represent the intermediate digits by the follow­
ing computer logic: 

B 
2 

ate that the "borrows" W1 and W1 are from the previous register digits (i.e., to the 
right) and that "Wz11 and 11w211 are the inputs for the next position over to the left. The logic 
circuitry which generates only the 11difference11 and not the "borrow" is called a HALF 
SUBTRACTER (which is logically the same as a HALF ADDER). Thus, the three 11AND11 

gates and 11OR11 gate which generate D above are a HALF SUBTRACTER. The complete 
logic above which generates both the ,i~Jifference11 and 11borrow" is called a FULL 
SUBTRACTER. 
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10. 3 THE LOGIC SUBTRACTER (Continued) 

The complete 4-bit logic subtracter is shown in the figure below. 
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10. 3 THE LOGIC SUBTRACTER (Continued) 

Note that the readouts consist only of flip-flops wired up in the "direct readout" con­
figuration . The first four flip-flops D1, D2, D3 , and D4 read out the direct output of the 
final "OR" gates of D1, D2, D3 , and D4 . The last "difference" D5 is read out directly 
from the "borrow" w4. This last "borrow" output to the extreme left of the register is 
called an 11OVERFLOW11• The "overflow'' will come on only when an improper subtraction 
is performed (that is, when the number in register B is greater than the number in register 
A). This "overflow" may also be used as a control in more complicated operations such as 
division and square root. 

When the full logic subtracter is put into operation, the answer will appear in register 
D to any subtraction problem as soon as the binary digits are entered into registers A and 
B. There are no intermediate steps and the answer is always instantaneous. The flip-flops 
in registers A and B may be further wired into separate pulsed (or common-pulsed) "up" 
or "down" binary counters to give a continuous display of all the subtraction possibilities . 
Each time a register changes value, the answer will change value. The registers A and B 
may also be wired into separate shift registers to obtain a continuous display of the 
11difference" depending upon the shifted position of the binary numbers in both registers. 

To make a subtracter larger than 4 bits , merely repeat the connections, logic, and 
circuitry as shown in positions 2 and 3 to add as many intermediate bits as necessary. 

10. 4 THE SHIFT ADDER 

When it is necessary to keep the number of logic gates to a minimum, we can combine 
a single FULL ADDER logic circuit with three shift registers and a binary counter to per­
form the addition procedure. However, the answer must be shifted out from the registers 
A and B, through the full adder logic, to register S. The control binary counter must 
generate precisely the same number of pulses as the number of flip-flops in each register . 
If all shift registers A, B, and Shave 4 flip-flops each , then a simple non-gated 2-bit 
binary "up" counter will suffice as a control counter. However, if the number of flip-flops 
in shift registers A, B, and Sis a non-binary number (i.e. , not 2, 4, 8, 16, 32, or 64, 
etc . ), then an appropriate gated logic counter must be used as a control counter . For 
example, if the registers have 10 flip-flops each, then a BCD counter must be used as a 
control counter to generate precisely 10 pulses . 

• 
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10. 4 THE SHIFT ADDER (Continued) 

The diagram below shows the logic and wiring for a 4-bit shift adder. 

" HALT" 
COMMAND 

• 

• 

c 
C 

C 
C 
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10. 4 THE SIDFT ADDER {Continued) 

The first flip-flops to the right in the A and B registers are "sensed.11 by the full adder 
logic. Thus the inputs to the full adder are Ai, Ai, B1, and Bi. The "carry" and inverted 
"carry" C• and C• are generated from the flip-flop inputs. The "CARRY FEEDBACK" 
flip-flop Cc is directed by C• and C• steering and generates the "carry" feedback outputs 
Cc and Cc. These Cc and Cc inputs are fed back into the full adder logic to generate the 
"sum" outputs S• ands.. The "CARRY FEEDBACK" flip-flop must be reset to "0" before 
performing any addition. The "sum11 outputs s. and S• steer flip-flop s4 in register Sand 
the successive sum is shifted down the line until stopped by the SHIFT CONTROL COUNTER 
and the "HALT COMMAND". The addition process is started by shorting together momen­
&rily the two pins in the "HALT COMMAND" flip-flop (indicated by the two arrows). 

The "SHIFT SUBTRACTER" is also possible and it is left as a problem for the reader 
to make the slight logic changes to convert the "SHIFT ADDER"int.oa"SHIFT SUBTRACTER" 
if he so wishes. 

10. 5 "SAMPLE-AND-HOLD" I.DGIC 

The "sample-and-bold" is one of the more important functions of advanced computer 
operations. The approach discussed here is that of a digital type and the logic shown is 
only one way in many to build a "sample-and-hold". 

The basic function is to "sample" a number entered in one register and copy it into a 
second register without removing the basic number from the first register. Consider two 
4-bit registers A and Bas shown in the diagram below. 

REGISTER 
A 

REGISTER 
B 

~ 

"SAMPLE" 
COMMAND 

Register B, shown as an 11up11 counter, may be of any configuration desi ed. However, 
register A as shown above has no other function other than displaying the "sampled" number 
from register B. To operate, connect the 11SAMPLE COMMAND" point to the output of an 
additional flip-flop. Each output in register B is now "AND"-ed with the outputs B1, B2, 
B3, and B4. Now, whatever number is present in register B will input to each respective 
"AND" gate where the number is a 11111 • The flip-flop which controls the "SAMPLE COM­
MAND11 provides the second input to each "AND" gate. By setting this flip-flop to a "1", the 
gates are turned on where there is a 11111 in the B register. By resetting this flip-flop, we 
turn off any ''AND" gates that are "l", thus putting out a 11trigger" pulse into each respective 
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10. 5 11SAMPLE-AND-HOLD11 LOGIC (Continued) 

A register position where the "AND" gate was on. The number present in the B register 
is thus "sampled" into the A register and is held there until cancelled. As was mentioned 
earlier, there is no further function that can be performed with the A register as it stands 
now. 

If we wish the A register to perform additional fWlctions such as counting or shiftmg 
after sampling, more logic must be added as shown in the diagram below: 

REGISTER 
A 

"SAMPLE'' 
COMMAND 

REGISTER 
B 

h1 

In this case, we have given register A the additional capability of acting as an "up1' 

counter . By changing the gate inputs from the "true" sides of A1, A2, and A3 to the "false" 
sides of A1 , A2 , and A3 , respectively, register A will then operate as a "down" counter in 

addition to "sample-and-hold". ate the addition of the "OR" gates to allow for two 
separate inputs for each flip-flop in :register A. Also, three more "A D" gates wer added 
(on top) to "cut off" the counter interconnection during the time when the sampling is done. 
The HALT COMMAND flip-flop also acts as an effective counter "cut-off" control. This 
principle will be used in one of the MULTIPLIER configurations later on. 

The number in register B will now be sampled into register A when the "SAMPLE" 
COMMAND is triggered by a flip-flop output. Then, by setting the HALT COMMAND 
flip-flop, the count will begin from the number that was 11sampled" in. The count may be 
stopped at any time by resetting the HALT COMMA D flip-flop . 

If register A is connected as a shift register, then the top "cut-off" "AND" gates are 
not needed, but the logic is more complicated and requires inverted outputs from the 
"AND" gate. 
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10. 5 "SAMPLE-AND-HOLD" l.OGIC (Continued) 

The configuration is as follows: 

" HIFT" CO 1MAND 

R EGISTER 
A 

"SAMPLE" 
OOMMAND 

REGISTER 
a 

' •, 
'• 

h1 

Now we have given register A the additional capability of acting as a shift register 
(left). The "shift" connections may also be changed so that a "right11 shift is performed (no 
other wiring changes are necessary). Note the connections to "+6 11 and "ground1' ( y ). 
These must also be adjusted accordingly so that the number will shift out left (or right). 

The number in register B will now be sampled into register A when the "SAMPLE" 
COMMAND is triggered by a flip-flop output. Then, by further triggering of the "SHIFT" 
COMMAND, the 11 sampled" number will shift out in the left direction. The A register can 
also be wired for "end-around'' shifting in either direction. 

10 . 6 GATED 11 UP-OOWN 11 COUNTER 

The basic definition of a binary "UP-DOWN" COUNTER is a single register binary 
counter that· can be controlled by some means so as to count "UP" or ''DOWN" at the proper 
command. The basic 4-bit counter configuration shown here uses "AND" and "OR" logic 
with two flip-flops to control the "UP" and "OOWN" count. 

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

91 

10. 6 GATED "UP-DOWN' COUNTER (Continued) 

" UP-DOW " CONTROL 

The "UP-DOWN" CONTROL flip-flops are wired up so that the free-running counter 
will count alternately "UP" and then switch automatically to "DOWN11 after resetting from 
the "UP" count. The counter will then count "DOWN" to zero and then "overflow" (i. e. , 
all numbers in the counter will be "1' s"). The "overflow" will switch the counter back to 
"UP" again and all the "1 's" will reset. The "UP" count will again begin from zero and 
proceed over and over again as described above. 

It is of interest to the reader to note that, as an automatic counter, it is not possible 
to go through all the "UP" counts and "DOWN" counts without allowing for the "overflow". 
The reason is that, as a "DOWN" counter, all the "AND11 gates controlling the "FALSE" 
side of the flip-flops are "ON" when the binary numbers in the counter are all zeros . When 
the counter is switched to "UP" again, these "AND11 gates will shut off and generate a 
"carry" which will turn on flip-flops when the counter should be reset. This condition 
does not exist when the "DOWN11 count is in 11overflow11 • 

10. 7 THE FULL- LOGIC BINARY MULTIPLIER 

In logical multiplication, we have three main numbers to consider . The first two are 
A and B, the two numbers to be multiplied together (i.e., the 11MULTIPIJCAND" and 
"MULTIPIJER1'). The third is called the "PRODUCT" of A and B and is represented by 
''P11 • The 11PRODUCT", however, must be broken down into individual cross-products 
which will be represented by double-subscript notations such as P 13 , P 22 , etc. 

The ''times" sign {x) will be used in this discussion to refer to arithmetical multipli­
cation. Now let us work out all the multiplication possibilities for a single-number product 
and present them in a truth table. 
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10. 7 THE FULL-LOGIC BINARY MULTIPLIER (Continued) 

A B 

0 0 

0 1 

1 0 

1 1 

AxB 

0 

0 

0 

1 

A-B 

0 

0 

0 

1 

Note that the product A x B truth table exactly matches the "AND" truth table for A· B. 
Thus, multiplication and "AND11 logic functions are the same. 

Basically, we have: 

P = Ax B = A·B 

Let us represent again two flip-flop registers A and B for a 4-bit full logic multiplier 
as follows: 

REGISTER 
A 

REGISTER 
B 

••• 

••• 

••• 

••• 

• •• 

• •• 

••• 

••• 

• •• ••• 

• •• • •• 

••• • •• • 

• •• 
The subscripts represent the flip-flop position in each register. The number in each 

register is then represented as A4A3A2A1 and B 4B3B2B1. Now let us multiply these two 
numbers together: 

A4 A3 A2 Al 

X B4 B3 B2 Bl 

A4xBl A3xB1 A2xB1 A1xB1 

A4xB2 A3xB2 A2xB2 A1xB2 

A4xB3 A3xB3 A2xB3 A1xB3 

A4xB4 A3xB4 A2xB4 A1xB4 

PB p7 p6 p5 p4 p3 p2 pl 

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

10. 7 THE FULL-LOGIC BINARY MULTIPLIER (Continued) 

Using the definition that Ax B = A· B, we have the following expression: 

A4 A3 A2 Al 

X B4 B3 B2 Bl 

A4 · B1 A3·Bl A2 · Bl Al - Bl 

A4 · B2 A3 · B2 A2 · B2 A1·B2 

A4·B3 A3·B3 A2·B3 A1 · B3 

A4·B4 A3-B4 A2·B4 A1 · B4 

PS p7 p6 p5 p4 p3 p2 pl 

Now, using our "cross-product" subscript notation, we have: 

A4 A3 A2 Al 

X B4 B3 B2 Bl 

p41 p31 p21 pll 

p42 p32 p22 p12 

p43 p33 p23 p13 

p44 p34 p24 p14 

PS p7 p6 p5 p4 p3 p2 pl 

ote the equivalent cross-product expressions . Examples: P 4 ,1 = A4 · B1, P 22 = 
A2 · B2 , and P 4 = A3 · B 4 . Each cross-product is a separate "ANDt expression. The 
bottom produc1 num6ers with single subscripts (i. e. , P , P , P , etc. ) represent the 

93 

1 2 3 
binary product digits of the complete product. These product digits represent the sum of 
all respective cross-products in each column and the "carries" that may be generated by 
previous columns. Thus, P 1 = P 11 = A1-B1. P 2 = P 21 + P 12 and c2 (the 1'carry") = 
P 2 · P 12. The expressions become very complicated. Note that the number of product 
dig\t positions must be exactly equal to the total number of digit positions in both the A and 
B registers . In this case, both registers have 4 digits each so 4 + 4 = 8 product digit 
positions. 

We will continue this discussion using a 2-bit full logic multiplier for simplicity. 
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10. 7 THE FULl.rLOGIC BINARY MULTIPLIER (Continued) 

REGISTER 
A 

REGISTER 
B 

••• 

••• 

••• 

••• 

• •• 

• •• 

• •• 

• •• 
Now let us start again with the cross-product definitions and set up the logic equations. 

A2 Al A2 Al 

X B2 Bl X B2 Bl 

A2-Bl Al-Bl p21 pll 

A2·B2 A1·B2 p22 pl2 

p4 p3 p2 pl p4 p3 p2 pl 

We can see that P 11 = A1· B1 , P 21 = A2· B1 , P 12 = A1· B2, and P 22 = A2- B2. We are 
now ready to determine the logic for the product digit positions P 4 , P 3 , P 2, and P 1. 

Pl = Pu = 1 A1·B1 I 

p 2 = p 21 + p 12 = (A2 · Bl)+(Al. B~ 

Using the addition identity we have 

p21 + p12 = (P21· p12)v(P21 · p12) 

P 2 = ((A2· B1)· (A1· B2)] v[ (A2• B1)• (Ai° B2)] 

= [ (A2• B1)- (i\ vB2)] v ( (A2vB1)• (A1 · B2)] 

= ( (A1 · A2 · B1)v(A2 · B1 · B2)] v ((Al· A2 · B2)v(A1 · B1 · B2)] 

(AI #1) 

(Subs ti tu ting) 

(DM #1) 

(DL #1) 

(AL 12) 

wigfi
Stolen 2 Line Transparent
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10. 7 THE FULI.r LOGIC BINARY MULTIPLIER (Continued) 

Pa = P22+C2 

= (A · B ) + C 
2 2 2 

= ((A2 · B2>· <\] v [ (Y2> · c2 J 
= [(A2· B2)• (A1• A2· B1 · B2)] v((A2• B2)· (A1• A2• Bi" B2)] 

(Subs ti tu ting) 

(Al fl) 

(Substituting) 

(DM 15) 

95 

= [(A2· B2)· (A1 vA 2vB1 vB2)]v [{A2vB2)· (A 1 · A2· B1 · B2)] 

= [(A· B ·A )v(A ·B ·A )v(A ·B ·B )v(A ·B ·B )]v 
2 21 222 221 222 

(DL #1 & AL #2) 

((A1· A2• B1• B2· A2)v(A1 · A2· B1 · B2· B2)] 

= [(A2 · B2 · A1)v(O)v(A2 · B2· B1)v(O)) v [(O}v(O)] 

= [(A2· B2·A1)v(A 2. B2· B1)] 

= (A · B ·A )v(A · B · B ) 
2 2 l 2 2 1 

Pa = I (A1·A2·B2)v(A2·~·B2>I 

ca = P22 · c2 

= A2· B2· C2 

= A2· B2·A1·A2· Bl· B2 

= Al. A2· Bl. B2 

(FI #2) 

(Simplifying) 

(AL #2) 

(CL #1) 

(Substituting) 

(Substituting) 

(FI *1) 

(Subs ti tu ting) 

Thus we have determined the logic for the product digits of the 2-bit multiplier. 
Summarizing, the logic for P 1 , P 2 , Pa , and P 4 is as follows: 

pl = Al· Bl 

P 2 = (Al· A2 · B 1)v(A 2 · B 1 · B2)v(A1 · A2 · B2)v(A1 · B1 · B2) 

pa= (A1·A2· B2)v(A2· Bl· B2) 

p4 = Ai A2· B1• B2 

Using the above information, the configuration for the 2-bit full logic multiplier is as 
follows: 
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10. 7 THE FULL- LOGIC BINARY MULTIPLIER (Continued} 

- ···1 ••• ••• • •• 
p 

p4 t > p2 t pl t REGISTER 
p3 ·r > 

••• ••• • •• •• I. 
I I 

Cfii~·· A ·A ·B A1·A2·B1 Al · Bl 

L<l.rtl~ rfi- ~ 
uE] - A2·B1·B2 

¥11 L<] ' - i1E1l 
-

A£B1· B2 ~·A2·B2 

411 -
A1•B1·B2 

Al 
Al 

A2 

Bl 
A2 A2 

Bl 

B2 
Bt 

B2 
82 

_r r 
, ... , .. 

A2 t > Al t > 

- ••• =•• 
-.. =•• 
B2 a > B1 t 

-.. =•• 
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IO. 7 THE FULL-LOGIC BINARY MULTIPLIER (Continued} 

ote that the readouts for P 1 , P 2 , P 3 , and P 4 consist only of flip-flops wired up in the 
"direct readout'' configuration. 

When the full logic multiplier is put into operation, the answer will appear in register 
P for any multiplication problem as soon as the binary digits are enter d int.o registers A 
and B. There are no intermediate steps and the answer is always instantaneous. The 
flip-flops in registers A and B may be further wired int.o separate pulsed {or common­
pulsed) 11up11 or "down" binary counters to give a continuous display of all the multiplication 
possibilities. Each time a register changes value, the product will change value. The 
registers A and B may also be wired int.o separate shift registers . 

It b comes very complicated to enlarge a multiplier of this kind to handle more than 
two binary digits in the A and B registers . As an example, let us summarize the very 
basic equations for the 3-bit and 4-bit configurations: 

A3 A2 Al A4 A3 A2 

X B3 B2 Bl X B4 B3 B2 

p31 p21 pll p41 p31 p21 

p32 p22 p12 p42 p32 p22 p12 

p33 p23 p13 p43 p33 p23 p13 

p6 p5 p4 p3 p2 pl 
p44 p34 p24 p14 

PB p7 p6 p5 p4 p3 p2 

For 3-bit A and B registers, we have: 

p 1 = p 11 = Ai" Bl 

p2 = p21 + pl2 

C2 = p21 · pl2 = Al· A2 · Bl• B2 

P = P +P + P + C 
3 31 22 13 2 

C3 = <P31' p22)v{P31 · pl3)v{P31. C2)v(P22· P13)v{P22· C2)v{Pl3 ° C2) 

* C3A = P31·P22·P13·C2 

P 4 = P 3 2 + P 23 + ca 

c4 = <P32· P 23>v(P32· C3)v(P23 · C3) 

P5 = P33 + C4 + C3A 

C5 = cP33 " C4)v(P33· C3A)v{C4· C3A) 

p = C 
6 5 

Al 

Bl 

pll 

pl 

* "Carry" c3A is the second "carry" generated by P 31 , P 22 , P 13 , and c2. The c3A 
occurs in a position two digits over to the left. Note how the "carries" become 
complicated 1 
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10. 7 THE FULirLOGIC BINARY MULTIPIJER (Continued) 

For 4-bit A and B registers, we have: 

pl = pll = Al-Bl 

p2 = p21 + p12 

C2 = p21· p12 = A1·A2· Bl· B2 

p3 = p31 + p22 + pl3 + C2 

Cs = (P 31° P 22)v(P 31 · P 13)v(P si" C2)v(P 22 • P 13)v(P 22 · C2)v(P 13 · C2) 

CSA= psi" p22· P13· c2 

p4 = p41 + p32 + p23 + pl4 + C3 

C4 = (P 41° P32)v(P 41° P 23)v(P 41 · P 14)v(P 41° C3)v(P32· P 23)v(P 32. p 14)v(P 32° C3)v 

(P 23. p 14)v(P 23. C3)v(P 14. C3) 

C4A = (P 41. p32· p 23° p 14)v(P41· p 23. p 14" C3)v(P41· p32· p 14' C3)v(P41' p32' p 23. C3)v 

(P32' p23' p14. C3) 

p 5 = p 42 + p 33 + p 24 + C3A + C 4 

C5 = (P 42· P33)v(P 42. P 24)v(P 42. c3A)v(P 42. C 4)v(P 33 · P 24)v(P33 · C3A)v(P33 · C 4)v 

(P24' C3A)v(P24· C4)v(C3A. C4) 

c5A = (P42· Paa· P24· c3A)v(P42· P24· caA· C4}v(P42· Paa· caA· C4)v(P42· Paa· P24· C4)v 

(P33" p24° caA· C4) 

p 6 = p 43 + p 34 + C 4A + C 5 

C6 = (P43 ' p34)v(P43" C4A)v(P43. C5)v(P34. C4A)v(P34" C5)v(C4A· C5) 

csA = P4a· Pa4· c4A· cs 

P7 :::, P44 + c5A + cs 

C7 = (P44" C5A)v(P44' C6)v(C5A. C6) 

P8 = c 6A + c 7 = c6A v c 7 

In order to build multipliers of larger size, we must use the cumulative addition 
method as shown in the next project. 
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10. 8 THE CUMULATIVE-ADDITION MULTIPLIER 

The cumulative-addition multiplier performs multiplication by successive addition 
rather than by full logic gating. Logic gates are used to control all the steps, but not for 
direct functional multiplication display. In effect, we will convert the non-gated adder 
described in section 9. 6 into a multiplier by the addition of "sample-and-hold" logic. This 
project requires four registers. The 4-bit multiplier (with an 8-bit "product") will be 
described here. The logic diagram for this multiplier is as shown below. 

Q 
z Q 
< z 
~ ~ 

= .... 8 8 
!: ~ = h :i:,"' c°' 0 ::, c/ii is"' < 
~i 8i . 
8tcc <"' < a: 
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10. 8 THE CUMULATIVE-ADDITION MULTIPLIER (Continued) 

The ACCUMULATOR (or PRODUCT) register is on top. This register is simply an 
8-bit "OOWN11 counter. The second register, the ADDE D register, is basically an 
8-bit "UP" counter modified to accept 11sampling" from the MULTIPLICAND register 
below for cumulative addition. The MULTIPLICAND register is a 7-bit left-shift register 
which will display a 4-bit number in four different positions (i.e. , the first or "set" 
position and three additional positions}. The bottom MULTIPLIER register consists of a 
4-bit right-shift register which will shift out a 4-bit number to the right. In addition, 
there is a 11halt control" for the adder portion and a "halt control" for the multiplier portion. 
Only the extreme right digit will be "sensed11 as this digit will control the successive 
addition process. Each time a binary number shifts into the extreme right position, it will 
be "sensed" by the logic circuitry. If it is a 1'1", then a "sample" and an addition will be 
performed, followed by a "shift" of both the MULTIPLIER and MULTIPLICAND registers 
to the next position. If the extreme right multiplier number is a "011 , then there will be 
no "sample" and E2. "add"; but there will be a 11shift" only in both the MULTIPLIER and 
MULTIPLICA D registers to the next position. 

If we analyze this process by use of a "flow" diagram, we have the following processes: 

HALT 
(COMMAND} 

MULTIPLICATION 
SUBROUTINE 

START 
(MANUAL 

COMMA D) 

DIGIT 
SE SE 

YES 

SE SE 

"0" "l" 

SAMPLE 
(COMMAND) 

ADD 
(COMMAND) 

SHIFT 
(COMMA D) 
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10. 8 THE CUMULATIVE-ADDITION MULTIPLlER (Continued} 

The process begins with 11START" which is accomplished by shorting together the two 
pins marked with arrows in the flip-flop in the MULTIPLICATION CONTROL. This starts 
the multiplication process in motion. The "digit sensett function is accomplished by con­
necting all the "true" outputs of the binary digits (bits) in the MULTIPLICAND and 
MULTIPLIER registers to an "OR" gate(or combination of "OR" gates). In other words, 
we must "OR" together all the "true' outputs mentioned above. In this configuration, when 
both registers "clear" (i. e. , when the last number shifts out from either or both registers), 
the "OR" gate to the MULTIPLIER CONTROL will turn off and produce a "downswing" 
trigger which will stop the multiplication process. This "halt control" flip-flop will trigger 
precisely at the right time. 

The SUBROUTINE is controlled by the 2-bit counter in the MULTIPLICATIO CONTROL. 
This 2-bit counter is wired to cause three "A D" gates to turn on and off precisely at the 
right time to produce triggers which control the "SAMPLE", "SHIFT" and "ADD" commands. 
The "MULTIPLIER SENSE" is the "true" output of the last digit to the right in the MUL Tl­
PLIER register . This "MULTIPLIER SENSE11 is wired into both the "AND" gates which 
control the "SAMPLE" and the "ADD". Thus, only when the "MULTIPLIER SENSE" is a 
11111 , will a "SAMPLE" and "ADD" command be generated. There will always be a "SHIFT" 
command until the registers are "cleared". Note that there are two pulse generators--one 
in the ADD CONTROL and one in the MULTIPLICATION CONTROL. The ADD CONTROL 
pulse generator must be fast enough to complete the addition before another pulse is gener­
ated by the MULTIPLICATIO CONTROL pulse generator. In the 4-bit multiplier, the 
ACCUMULATOR has 8 bits and therefore 256 "ADD" pulses must be generated before the 
next MULTIPLICATION pulse. If the ADD pulse is too slow, the final answer will be 
erroneous . After the multiplication process is complete, all registers will be "cleared" 
and the final answer will be present in the ACCUMULATOR. The ACCUMULATOR must be 
individually "cleared" digit by digit before entering the next two numbers in the MULTIPLIER 
and MULTIPLICAND registers. 

10. 9 THE DIVIDER 

In division, we have four main numbers to consider. The first is the DIVIDEND, the 
number to be divided. The second is the DIVISOR, the number which the dividend is to be 
divided by. We will call these two number-s A and B, respectively. In other words, we 
have A divided by B (A + B). The QUOTIENT, or third number, is the answer to the prob­
lem A ..;. B. It will be represented by Q. The fourth number is an intermediate number 
which will be called the SUBTRAHEND for reference purposes (since we will be performing 
successive subtraction of the DIVISOR from the DIVIDEND). This number is represented by 
S. This intermediate number will be successively subtracted from the dividend to yield the 
quotient. The SUBTRAHE D number is dependent on the divisor, and is a "sampling'' of 
the divisor (or its complement) which occurs in successive "shifted" positions to the right. 
Also, if and when the complement is s~btracted, the number "l" (last digit on the right) 
must be further "sampled" and subtracted to complete the process of ''addition by subtraction 
of complement" which will b described later. 

Division is a complicated process since there is no way of using only logic circuits to 
display a quotient of two numbers (as was done with the "full logic" multiplier). The primary 
reason for this is that DIVISION BY ZERO IS IMPOSSIBLE. Therefore, no "truth table" can 
be drawn up to represent division. Note the attempt as follows: 
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10. 9 THE DIVIDER (Continued) 

A B A+B 

0 0 (INDETERMINATE) 

0 1 0 

1 0 (INDETERMINATE) 

1 1 1 

Note that in the above example, two of the cases are indeterminate. Therefore, the 
"truth table 11 method is out. However, division can be accomplished by successive sub­
traction of the DIVISOR from the DIVIDEND and by shifting the DIVISOR one position to the 
right when it exceeds the DIVIDEND. An "OVERFLOW" sense is used to determine when 
the DIVIDEND is less than zero after subtraction. When this condition exists, we must add 
back the number which was subtracted and then shift the DIVISOR one position to the right. 
Since numbers can only be subtracted from the ilividend, we must perform the equivalent 
of addition by first subtracting the divisor complement, and then by further subtracting the 
number "1" (last iligit on the right). The QUOTIE T is entered in digit-by-digit and shifted 
left one position at a time until the process has been completed. 

In order to convert the above processes to a computer function, the following "flow 
chart" inilicates what must be done. 

DIVlSIO 
SUBROUTINE 

SUB 2 

SUB 3 

SENSE DIVISOR REGISTER 
DIGITS 

0 YES 

SUB l 

SAMPLE DIVISOR COMPLEI\ T 
INTO S REGISTER 

SUBTRACT T 
FROM DIVIDE GISTER 

RESET OVERFLOW 

" l 'I 

wigfi
Stolen 2 Line Transparent
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10. 9 THE DIVIDER (Continued) 

The process begins with "START" and branches out in the direction of the arrows . 
As long as the divisor contains at least one digit, the process will continue. The next 
''branch" occurs when the "overflow" is 1101', indicating that the number subtracted from 
the dividend was too large. Therefore, we must initiate four additional steps to add back 
the number by "complement subtraction. 11 If the 11overflow11 is "1", then the four steps 
above are not performed. The "overflow" is then reset, the divisor shifted right one 
position, and the entire process repeated until the divisor is depleted of all its 111" digits . 

In planning these functions with flip-flops and computer logic, we make use of four 
registers: the DIVIDEND REGISTER "A'', the DIVISOR REGISTER "B", the SUBTRAHEND 
REGISTER "S", and the QUOTIENT REGISTER 11Q". The controls will consist of a 
SUBTRACT CONTROL "HALT" COMMAND with a fast pulse, a DIVIDE CONTROL "HALT" 
COMMAND with a slow pulse, a DIVIDE CONTROL 3-BIT BINARY "UP" COUNTER to 
control the "commands", and a "l" flip-flop to control the addition of the extra "l" in the 
extreme right digit to compensate for "complement subtraction" addition. 

The following logic diagram indicates the set-up for a 4-BIT DIVIDER. In order to 
increase or decrease the number of binary digits (bits), add or remove the appropriate 
number of flip-flops in the center position and adjust wiring and gating accordingly. 

""' . 
PIIT 

DrVlD.I" OONTIIOL 
.,KA 1.. r CXUfMAJrfO 
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10. 9 THE DIVIDER (Continued) 

As in the case of the ''cumulative addition" multiplier, logic gates are used to control 
all the individual commands. However, since there are more commands involved, we 
must use a 3-bit "up" counter (instead of a 2-bit "up" counter as in the multiplier) to 
accomplish these additional steps. The preceding logic diagram uses two "SAMPLE-AND­
HOLD11 functions (to "sample" the divisor, or its complement as necessary, into the 
SUBTRAHE D regiAter), an "OVERFLOW'' sense, a "DIVIDE CONTROL" binary "up" 
counter, two "HALT" COMMANDS with their respective fast and slow pulses, and the ftl 11 

flip-flop . Note: the fast pulse must complete the subtraction before the next slow pulse 
triggers the control. Other functions designed into this divider are: DIVIDEND DIGIT 
SENSE LOGIC and SUBTRAHEND REGISTER CONTROL LOGIC. 

After the project is wired up, division is accomplished as follows: Enter the DIVIDEND 
number in register A and the DIVISOR in register B. Both numbers should be entered 
FLUSH LEFT. Be sure that all other flip-flops have been reset. Then short together the 
two pins indicated by the arrows in the DIVIDE CO TROL "HALT" COMMAND. The 
division of the two nwnbers will be performed automatically and the process will stop after 
division is completed. If division is attempted by "0", then the process will automatically 
stop after the first complete cycle and a single "1'' will show up in the extreme right in the 
QUOTIENT register. If two proper numbers have been divided, the answer will appear 
FLUSH LEFT in the QUOTIENT register and will contain four bits. For instance, 1000 + 
1100 will show up as 0101 in the QUOTIE T register. The binary point should be placed 
accordingly. In this example, 1000 + 1100 = . 0101. If we had 1000 + 11. 00, the 
answer would be 010. 1. 1000 + 1. 100 = 0101. 

O. 10 THE SQUARE ROOTER 

The binary square rooter is the most complicated project shown in this book. In order 
to understand this project one must be fully familiar with the previous project: THE DIVIDER. 
Refer back to chapter 6, if necessary, for discussion on extracting square roots. The 
project described here is a 4-BIT SQUARE ROOTER which will operate on an 8-bit number 
and extract its 4-bit square root . Let us illustrate by successive subtraction what happens 
when we extract the square root of 3 (11) in binary (additional zeros are added on to make 
8 bits). 

@ 
✓ 11" 00,\00" 00 

-01 

10 00 

CD - 1 01 
11 00 

@ -11 01 
11 00 00 

© - 1 10 01 
1 0111 

The e are several things that should be noted in the exafuple above. First, notice the 
position of the ''0111 portions of each number that is subtracted from the RADICAND (the 
number inside the radical '' ~ 11) . The 1101 11 always occurs at the extreme right and, in 
each successive "subtraction" level position, the 1101" is shifted two positions to the right. 
We start the subtraction process with the 1101" at the first level. If we can subtract, we enter 
a "1" (circled) to the left and perform the subtraction as sho}YU above. Then we ''bring down" 
the next two digits to the right. Next we shift the "01 11 twice to the right. Now, immediately 
to the left of the "01" we enter the circled number above which gives us "101". In this case, 
we can still subtract this 11101 11 from the remainder "1000" (left after the first subtraction) . 
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10.10 THE SQUARE ROOTER (Continued) 

Therefore we enter a second "1" to the left of •r101 11 , perform the second subtraction, and 
11 bring down" the next two digits. Again we shift 1101" twice to the right. We now "tack on" 
to the left the two circled numbers above to obtain 111101n. This time we can not subtract 
"1101" from the remainder "1100". Therefore we enter a "0" to the left of "1101" and 
circle it. Now we 11bring down" the last two digits and again shift 110111 twice to the right. 
We "tack on" to the left the three circled numbers above to yield "11001". Now we subtract 
'11001" from the remainder 11110000" and enter a "1" to the left of "11001" and circle it. 
The circled numbers "1101" represent the 4-bit square root of the 8-bit number "11000000". 
Now, let us observe the positions of the numbers that were subtracted. 

01 
101 

1101 
11001 

As can be seen, the extreme right 111" has shifted twice as we progress to each successive 
level downward. Note also that the extreme left digit shifts one position to the right as we 
progress to each successive level downward. Also, all other digits except the "01" 
represent the square root digits calculated for all the levels above by successive subtraction 
(or by attempted subtraction). 

The key to the square rooter lies in the "01" which keeps shifting twice to the right 
before a successive subtraction is performed (or attempted). We make use of this travelling 
"01" as a control by setting up an 8-bit shift register called the TRAVELLING 11 111 ("Tl") 
REGISTER. In fact, this register is set up so that, from reset, the travelling "l" will 
automatically be entered in at the extreme left, shifted through the 8 positions, then shifted 
out at the right . The register is "gated" so that a "halt" command is generated when the 
11111 disappears to the right. Also, this "Tl" register controls "sampling" into the root 
register. The ROOT REGISTER "R" is also an 8-bit right-shift register and the calculated 
square root will appear in the last 4 digits to the right. There are also two more registers 
needed: the SUBTRAHEND REGISTER "S" for intermediate subtraction, and the RADICAND 
REGISTER "A" in which is entered the number to be square rooted. Both registers "S" and 
"A" are 8-bit "up'' counters . 

In addition, "SAMPLE-AND-HOLD" logic is used to "sample" registers "R" and "Tl" 
simultaneously into register "S". Simultaneous "complement'' sampling of ''R" and "Tl" is 
also performed. As in division, "complement subtraction" addition must be performed when 
necessary, and the extra "l" must also be subtracted. "SAMPLE-AND-HOLD"logic controlled 
by the "Tl" register will allow the OVERFLOW in the 11A" register to be "sampled" into the 
ROOT REGISTER in the proper position before the ROOT REGISTER shifts one position to 
the right. The ROOT REGISTER "R" shifts at half the rate of register "Tl". For every 
shift of register "R" to the right, register "Tl" shifts two positions to the right. 

The controls consist of 2 "halt" commands (one for SUBTRACTION HALT and the other 
for ROOT HALT). A 4-bit "up" counter with gated logic is used as a "ROOT CONTROL" to 
generate the square root commands. 

The flow chart on p.107 indicates the process to be used for extracting the square root. 

ote that three subtractions are performed. They are labelled "SUB 1", "SUB 2" 
and "SUB 3 11 , respectively. The last two subtractions areE.2!_performed if the OVERFLOW 
is a "1" after the first subtraction. The logic diagram for extracting the square root is as 
follows: 
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10. 10 THE SQUARE ROOTER (Continued) 

SUB 2 

SUB 3 

RE IST ER "Tl " 

UB l 

MPLE COMPLEME 

SUBTRACT REGISTER "S" 
FROM REGIST ER " A" 

START 

SENSE UM:BER IN 
REGISTER "Tl " 

YE 
SHIFT RIOHT 

INTO REGISTER " R" 

RESET "OVERF LOW" 

SHIFT RIGHT 
REGISTER " R" 

REGISTER "Tl" 

SENSE N MBER IN 
REGISTER "T l" 

107 

NO 

HALT 

The ROOT CONTROL counter generates 16 commands, but only 13 are used. Commands 
"1", "13", and "14" should not be used, but the "AND" gates are shown for reference only. 
Command "1" must not be used so that commands "0" and "2" can properly double-shift the 
"Tl 11 register. After the logic is connected up per the diagram, the root is extracted as 
follows: First,enter in the number to be rooted in register 11A". The binary point reference 
is after every second binary digit in register 11A 1'. To enter '\[i, enter 11111 in position Ar 
For ,JTf. enter "1" in A8 and Ar For '1 101.1101, enter "1" in A 7 , A 5, A4 , A3, and A1. 
For ✓10101001, enter 111" in A 8, A6 , A4 , and A1. The binary point is not calculated and 
must be mentally placed after the operation. All other registers must be reset before the 
square root can be extracted. Short together the proper pins (indicated by arrows) in the 
ROOT CONTROL 11HALT11 COMMAND. The rooting process will automatically start and 
stop when the rooting is finished. The square root then appears in the last four positions to 
the right (R1 , R2, R3 , and R4} in the ROOT REGISTER. 

The "FAST PULSE" in the SUBTRACT CONTROL must be fast enough to complete a 
subtraction by counting (256 pulses minimum) before the next slow pulse is generated in the 
ROOT CONTROL "SLOW PULSE1'. Also·, note that in the "sampling" process, not all 
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10.10 THE SQUARE ROOTER (Continued) 

positions need be "sampled11 in the "R" and "Tl" registers. Therefore, bits R1, R3 , R5, 

and R7 receive no "sample". Bits s2 and s8 also do not receive "sampling". In "sampling" 
the two registers "R" and .. Tl" simultaneously, we "sample11 the equivalent of "R" v "Tl 11 

[that is, we "OR" each bit position: {R1 v Tl1), {R2 v T12), (R3 v Tl3), (R4 v ;14)'....:tc.]. 
In "sampling" the complement of two registers, we "sample" the equivalent of "R"· "Tl" 
[ tha!.2_s, we 11AND" each complement bit position: (R1 · Tl1), (R2 · T12), (R3 · T13), 
CR4 · TI4), etc. ]. Where no "sample11 was necessary, the operation was simplified. The 
reader will discover that there are many, many logic concepts in this square rooter project. 

10.11 COMPARATORS 

A comparator performs a comparison between the numbers entered in two registers 
(which we will call 1A" and 11B11). The six comparisons that can be made are as follows: 

1. A > B (A greater than B) 

2. A < B (A less than B) 

3. A = B (A equal to B) 

4. A /: B (A unequal to B) 

5. A ~ B (A greater than or equal to B) 

6. A ~ B (A less than or equal to B) 

The comparator is a SENSE function and no calculations (or computing processes) need 
be performed. Comparisons can be accomplished through the use of pure logic gating and 
the result is read out on one flip-flop called the COMPARATOR READOUT. 

In performing the comparison, we ask the questions: Is A> B? Is A< B? Is A = B? 
etc. If the answer to a question is YES, then the comparator readout is a 1'1". If the 
answer is NO, then the comparator readout is a "0". Proper logic gating will be developed 
through use of truth tables. The development of logic for all 6 cases above should be 
fairly easy to follow because the reasoning in the English language is very similar to the 
developed logic. However, the larger comparators require many, many "AND1' and "OR" 
gates, as can be seen in the following explanations. 

Let us consider two single digit binary numbers A and B (digits may be either "0"s or 
"l"s). We can now set up a truth table for the 6 comparison functions as follows (this will 
be referred to as the ~truth table): 

A B A>B A<B A=B A/B A~B < 
A = B 

0 0 0 0 1 0 1 1 

0 1 0 1 0 1 0 1 

1 0 1 0 0 1 1 0 

1 1 0 0 1 0 1 1 

(A· B)v(A· B) (A· °13)v(A· B) 
A•tf - (AvB) · (AvB) ('\vB)· (AvB) Avfl° AvB A B A·B 
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10. 11 COMPARATORS (Continued) 
The logic functions in the bottom row of the table have the exact same truth tables as the 

comparisons shown in the top row. Therefore the bottom row represents the equivalent 
"AND" and "OR" logic expressions for the comparisons and may be directly substituted in 
any logic equation. 

10 . 11.1 THE "GREATER THAN" COMPARATOR 

For single digit binary numbers A and B, we have already pointed out in the main truth 
table that (A > B) = 4-\ · B). The logic diagram is as follows: 

••• 
C 

• • 

COMPARATOR 
READOUT ----.... •• 

A 

••• 
••• B. 

---~-•• 
For 2-bit binary numbers A and B, we represent the digit positions as follows: 

A2Al 

B2Bl 

ow, the number A2A1 is greater than B2B1 (A2A1 > B2B1) when(A2 > B2).2,! when (A2 ~ B2) 
and (A1 > B1). This can be written logically as follows: 

C = (A2 > B2)v [ <A2 ~ B;· (A 1 > B1)] 

The letter 11 C11 denotes 11 COMPARISON11 • We must now refer back to the main truth table and 
substitute 11AND11 and 110R11 functions for A12:....!1). . A2 ~ B2), and (A 2 > B2' . Substituting, 

we have: C = (A2· B2)v (A2 vB2) ·(A1. B1>] 
The logic diagram for the above expression or e 2-bit comparator is as follows: 

••• COMPARATOR •• •• 
READOUT 

C . A2 A . 
1 

• • ••• ••• 
A2Al> B2Bl ••• • •• 

A2·~2 

B2 Bl 

•• •• 

wigfi
Stolen 2 Line Transparent
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10. 11. 1 THE ''GREATER THAN" COMPARATOR {Continued) 

For a 3-bit comparator, where A3A2A1 > B3B 2B 1 , this condition exists when (A3 > B3) 

.2!. when (A3 ~ B3) ~ (A2 > B2} ,2!. when (A3 ~ B3} and (A2 ~ B2) and (A1 > B1}. This 

can be written logically as follows: 

C = (A3 > B3)v[ (A3 ~ B3)• (A2 > B2)] v[(A3 ~ B3)· (A2 ~ B2)· (A1 > B1)] 

Substituting "AND" and ''OR" comparison equivalents, we have: 

C = (A3-ii3)v[(A:/ff'3)• (A2·B2)]v (A3vB3)• (A/B2)· (Ai'B1)] 

The logic diagram for the above expression for the 3-bit comparator is as follows: 

COMPARATOR 
REAOOUT 

••• 
C 

• • 

A·B 
3 3 

••• 

••• 

For a 4-bit comparator, where A4A3A2A1 > B4B3B2B1 we have: 

•• 

••• ••• 

•••••• 

•• 

C = (A4 > B4)v[ (A4 ~ B4)· (A3 > B3)] v[(A4 ~ B4)· (A3 ~ B3)· (A2 > B2)]v [(A4 ~ B4)· 

(A3 ~ B3)· (A2 ~ B2)· (Al> Bl}] 

----Substitutine: "AND" and "OR" comparison equivalents, we have: 

C = (A4 • B4)v[ (A/i\}· (A3 · B3) ]v [<A4 vi\)·(¾ vB3)· (A/B2)] v [<A4 vB4)• (A3vB3)• 

(A 2 vB2) · (A1 · B1)] 

The logic diagram for the above expression for the 4-bit comparator is as follows: 
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10. 11. 1 THE "GREATER THAN" COMPARATOR (Continued) 

COMPARATOR 
READOUT 

••• 

-

-

I 

••• 

••• 

••• 

••• L......J 

, 

I 
• •• 

••• • •• 
oee 

*Note : 5 or more inputs may be accomplished by "expanding" a 4-input gate 
(i.e. , by using more than one gate) as follows : 

----iEl• -.--I 
5 INPUTS 5 INPUTS 

The above example also applies to "OR" gates. 

111 

••• 

◄ ••• 

The general logic equation for an 11n11-bit 11greater than" comparator is as follows: 

C = (A > B ) v [ (A 2! B ) · (A l > B . 1)] v [ (A ~ B ) · (A l ~ B 1) · (A 2 > B 2)] v n n n - n n- n- n - n n- n- n- n-

[ (An~ Bn)· (An-1 ~ Bn-1)· (An-2 ~ Bn-2) ' (An-3 > Bn-3>] v[ {An~ Bn) · (An-1~ Bn-1)· 

(A ~ B ) · (A ~ B ) · (A 4 > B 4)] v ...... v 
n-2 n-2 n-3 - n-3 n- n- [ (A ~ B )· (A ~ B )· 

n - n n-1 - n-1 

•• . . •. . {A3 ~ B3)• (A2 ~ B2) · (Al> Bl)] 

Note that the last term within each set of brackets is " > 11 while all other terms are " ~ ". 
Also, each successive set of brackets contains one more term than the previous set. The 
very first term in the expression is always A > B . The "terms" are those expressions 
within each set of parentheses. After substiillting the equivalent "AND" and "OR" functions, 
the general equation becomes as follows : 
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10. 11. 1 THE "GREATER THAN" COMPARATOR (Continued) 

C = (A • B )v [<A vB ) · (A 1, B 1)] v [<A vB ) · (A 1vB 1) · (A 2• B \] v n n n n n- n- n n n- n- n- n- 2' 

[ (A vB )· (A lvB 1>· (A 2vB 2>· (A 3· B a>] v r(A vB )· (A lvB 1>· n n n- n- n- n- n- n- r n n n- n-

(A 2vB 2)•(A 3vB . 3)•(A 4.B 4)]v ....•. v[(A vB ) · (A 1vB 1)• n- n- n- n- n- n- n n n- n-

...•.. · (A3vB3)· (A2vB2)· (Ai" B1}] 

10.11. 2 THE "LESS THAN" COMPARATOR 

The "less than" comparator follows very closely to the "greater than" comparator and 
would be identical if A were substituted for B and B substituted for A. In the main truth 
table, we see that (A< B) = (A· B). For single digit binary numbers A and B, the logic 
diagram is as follows: 

e e e COM PARA TOR 
READOUT 

C 

• • 

••• 
A 

-.... 
B 

••• 

For 2-bit binary numbers A and B, we represent the digit positions as follows: 

Now, the number A2A 1 is less than B2B1 (A2A1 < B2B1) when (A 2 < B2) or when 
(A2 ~ B2) and (A1 < B1). This can be written logically as follows: 

C = (A 2 < B2)v [<A2 ~ B2)· (A1 < B1)] 

The letter "C" denotes "COMPARISON". We must now refer back to the main truth 
table and substitute 11AND" and 1'0R" functions for (Al< B1), (A2 ~ B2), and (A2 < B2). 
Substituting, we have: 

The logic diagram for the above expression for the 2-bit comparator is as follows: 
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10.11. 2 THE "LESS THAN" COMPARATOR (Continued) 

••• COMPARATOR • •• • •• READOUT 

C A2 Al 

• • •• •• 
A2Al < B2Bl - •• •• 

A2· B2 

B2 Bl • 

••• • •• 

For a 3-bit comparator, where A3A2A1 < B3B2B1 , this condition exists when (A3 < B3) 

£!: when (A3 ~ B3) and (A2 < B 2) £!: when (A3 ~ B3) and (A2 ~ B2) and (A1 < B1) . This 

can be written logically as follows: 

C = (A3 < B3)v [(A3 ~ B3)· (A 2 < B2)) v [(A3 ~ B3)· (A 2 ~ B 2)• (A1 < B1)] 

Substituting "AND" and "OR" comparison equivalents, we have: 

C = (A3 . B3)v [<A3 vB3) · (A2 • B2) v [ (A3 vB3) · (A2 vB2) · (A1 · B1)] 

The logic diagram for the above expression for th 3-bit comparator is as follows: 

COMPARATOR 
READOUT 

••• 
C 

• • 

• •• 

••• 

••• ••• 

•• 

•• 

••• ••• 
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10. 11. 2 THE "LESS THAN" COMPARATOR (Continued) 

For a 4-bit comparator, where A4A3A2A1 < B4B3B2B1 we have: 

C ::::: (A4 < B4)v [tA4 ~ B4)• (A3 < B3)Jv [<A4 ~ B4) · (A3 ~ B3)• (A2 < B2)) v [<A4 ~ B4) · 

(A3 ~ B3)· (A2 ~ B2)· (Al < Bl) ) 

Substituting "AND" a.nd "OR" comparison equivalents, we have : 

C = (A4• B4)v [<A4 vB4)· {i\ · B3)] v [<A4 vB4)• (A3 vB3)· (A2 · B2)] v [ tA4 vB4) · (A3 vB3) · 

(A2vB2)· (Ai' B1)] 

The logic diagram for the above expression for the 4-bit comparator is as follows: 

COMPARATOR 
READOUT X4vBA ~ ••• • •• ••• • •• • •• ~; 

C . .... A4 t t> A3 t > A2 1 > A1 t -(l~ .4 •• .. A3vB3..o1 =•• ◄••· 4 aee i ►•• -
• - """'-... ! 

~ r .... 

4~ ::- ~ -
T - ..o! 

N • ~ - I /:Q 
C') 

""""--- ! /:Q 

"" -fl 
- "Iii =•• o•• 4 ••• /:Q A2vB2 ◄••· V .... 

< - 17 B4 1 > B3 t > B2 t ~ B1 t N 

< 
C') 

- ~I < A4 - B4 ._ ••• ••• ••• • •• "" < -

The general logic equation for an 110 11-bit "greater than" comparator is as follows: 

C .,. (A < B )v [<A ~ B ) · (A l < B 1)] v ~A ~ B ) · (A l ~ B 1) · (A 2 < B 2)) v n n n n n- n- ~ n n n- n- n- n-

[(A ~ B ) · (A l ~ B 1) · (A 2 ;;i B 2) · (A 3 < B a>] v [<A ~ B . ) · (A l ~ B 1) · n n n- n- n- n- n- n- n n n- • n-

(A 2 ~ B 2) · {A 3 ~ B 3) · (A 4 < B 4)] v ... .. . v f(A ~ B ) · (A l ~ B 1} · 
n- n- n- n- n- n- ~ n n n- n-

.. ..... (A3 ~ Ba) · {A2 ~ B2)· (Al < B1>] 

> 

> 

Note that the last term within each set of brackets is " < " while all other terms are '' ~ " . 
Also, each successive set of brackets contains one more term than the previous set. The 
very first term in the expression is always A < B . The "terms" are those expressions 
within each set of parentheses. After substitRting fiie equivalent "AND" and "OR" functions, 
the general equation becomes as follows: 

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

116 

10. 11. 3 THE "EQUAL TO" COMPARATOR (Continued) 

A2Al 

B2Bl 

Now, the number A2A1 is equal to B2B1 (A 2A 1 = B2B1) only when A2 = B 2 and A1 = B1. 

This can be written logically as follows: 

C = (A = B ) · (A = B ) 
2 2 1 1 

The letter "C" denotes "COMPARISON" . We can now substitute the expression (AvB) · (AvB) 
for A = B (A1 = B1 and A 2 = B 2) as follows: 

C = (A = B ) · (A = B ) 
2 2 1 1 

C = [<A 2vB2)• (A2vB2)] · ~A1 vB1)· (A1 vB1)] 

I C = (A2 vB2) · (A2 vB2) • (A1 vB1) · (f1 vB1) I (ASSOCIATION) 

(AL # 1) 

The logic diagram for the above expression for the 2-bit comparator is as follows: 

COMPARATOR 

••• READOUT 

C 

• • 

B3B2Bl 

A2vB2 

i\vB2 

A vB 
1 1 

•• 
A2 

•• 

ow, the number A3A 2A 1 is equal to B3B 2B1 (A3A2A 1 = B3 B2B1) only when A3 = 
B3 and A2 = B 2 and A1 = B1. This can be written logically as follows: 

C = (A3 = B3)• (A2 = B2)• (A1 = B1) 

•• 
Al . 

•• 
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10. 11. 3 THE "EQUAL TO" COMPARATOR (Continued) 

Substituting "AND" and "OR" functions, we have: 

C = [<A3 vB3) · (A3 vB3)] · [ (A2 vB2) · (A 2 vB2)] · [~A1 vB1) · (A1 vB1)] 

C = (A vB ) · (A3 vB3)• (A 2v1\)· (A.2 vB2)• (A1 vB1)• (A1 vB1) 

The logic diagram for the above expression for the 3-bit comparator is as follows: 

COMPARATOR 
READOUT 

••• 
C 

• • 

Substituting "AND" and "OR" functions, we have: 

117 

C = [(A 4 vB 4) · (A 4 vB 4)] · [ (A3 vB3) · (A3 vB3)] · [<A2 vB2 · (A2 vB2)] . [<A1 vB1) • (A1 vB1)] 

C = (A4vB4)· (A4vB4), (A3vB3)· (A3vB3), (A2vB2)· (A2vB2)· (A1v:i\) · (A1vB1) 

The logic diagram for the above expression for the 4-bit comparator is as follows: 
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10.11. 3 THE "EQUAL TO" COMPARATOR (Continued) 

- ,., 
A4vB4 _/ i 

• COMPARATOR 
"" 

REAOOUT - ,., I 

••• A4vB4./' i o•• ••• ◄••· oe• • 
"" C. A3vB 3 ...t. A4 . A3 . A2 t > Al . 

~; ., •• :•• , .. o•• oee - "" A3vB3 ,.,_ I 

17=- • • . 
... ,_ ,,,,,_ 

,-4 

j:Q • <N • - • j:Q ·- A2v 
. 

C"') - 2 ... j:Q 
I ,qt 

,,,,_ 
j:Q 'T~: =•• ••• ◄••· oee 
II 

.... A2vB2 ...., 

~ .,,,_ B4 e> B3 t > B2 t B1 t ~ < i C"') 

< A vB ........_ • "<t' -~•· , .. i, •• ◄-•• < 1 1 .., 
~ J 
i 

A.1vB1 • -.... 

The general equation for an "n"-bit "equal to" comparator is as follows: 

C = (A = B )· (A l = B 1), (A 2 = B 2)- (A 3 = B 3)· ...... · (A2 = B2)· (A1 = B1) n n n- n- n- n- n- n-

The transformed "AND" and "OR" logic equation, after substitution, is: 

C = (A v'fl )· (A vB )· (A 1vB 1)· (A 1vB . 1)· (A 2vB 2)· (A 2vB 2)• (A 3vB 3)· n n n n n- n- n- n- n- n- n- n- n- n-

(An_3 vBn_3) · ...... • (A2vB2)· (A2vB2)· (A1vB1) • (A1vB1) 

The order and transformation of terms is very straightforward for the "equal to" 
comparator. 

10.11. 4 THE "UNEQUAL TO" COMPARATOR 

Let us again consider the two single digit binary numbers A and B. Now we want to 
sense when A is unequal to B, or A I B. We will again set up a one-bit truth table (see 
also main truth table) for A 'I Bas follows: 
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10.11.4 THE "UNEQUAL TO" COMPARATOR (Continued) 

A B A/B (A· B)v(A- B) (AvB)· (AvB) 

0 0 0 0 0 

0 1 1 1 1 

1 0 1 1 1 

1 1 0 0 0 

The last two entries (A· B)v(A· B) and (AvB)· (AvB) represent logic functions which have 
the same truth table as A I= B and therefore all three expressions are equivalent. A+ B 
may be represented either by (A· B)v(A · B), or by (AvB) · (AvB). Note that these are the 
exact same logic expressions for A+ B, A - B, and A • B. If we have only one flip-flop 
for A and one flip-flop for B, the comparison is accomplished as follows: 

••• COMPARATOR •• ••• COMPARATOR • • READOUT READOUT 

C • A A . 

•• • • • 
•• •• 

B 

•• •• 

Either one of the preceding logic diagrams will determine the A t B comparison. Further 
discussion will be with the expression (A· B)v(A· B). 

For 2-bi t binary numbers A and B, we represent the digit positions as follows: 

A2A1 

B2Bl 

Now, the number A~1 is unequal to B 2B (A2A1 f B2B1) when A f B .Q.1: A j B . 
Th. b ·tt 1 . 1 2 2 1 1 1s can e wn en og1cally as follows : 

C = (A 2 f B2)v(A1 f B1) 

The letter "C11 denotes "COMPARISON". We can now substitute the expression (A· B)v(A· B) 
for A # B (A1 f B1 and A2 "f B2) as follows: 
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10. 11. 4 THE "U EQUAL TO" COMPARA. TOR (Continued) 

C = (A2 I B~v(A1 / B1) 

C = [(A2 · B2)v(A2 · B2)] v [<A1 · B 1)v(A1 · B1)] 

IC = (A2 · B~v(A2 · B2)v(A1 · i 1)v(X1 • B1) I (ASSOCIATION: AL #2) 

The logic diagram for the above expression for the 2-bit comparator is as follows: 

COMPARATOR 

••• READOUT 

C 

• • 

A2·B2 

A2· B2 

A·B 
1 1 

For a 3-bit comparator, where A3A2A1 1' B3B2B1 we have: 

A3A2Al 

B3B2Bl 

•• •• 
A2 Al 

•• •• 

Now, the number A3A2A1 is unequal to B3B2B1 (A3A2A1 f B3B2B1) when A3 / B3 or 
A2 f. B2 or A != B • This can be written logically as follows: 

- 1 1 

Substituting "AND" and "OR" functions, we have: 

C = ~A3 · ~ 3)v(A3 · B3~ v [<A2 · B2)v(A2 • B2ij v [<A/B1)v(A1 · B1)] 

C = (A3 · B3)v(A3 · B3)v(A2 · B2)v(A2 • B2)v(A1 · B 1)v(A1 · B1) 

The logic diagram for the above expression for the 3-bit comparator is as follows: 
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10.11. 4 THE "UNEQUAL TO' ' COMPARATOR (Continued) 

COMPARATOR 
READOUT 

••• 
C 

• • 

A ·B 
3 

For a 4-bit comparator, where A4A3A2A 1 f B4B3B2B1 we have: 

C = (A4 ! B4)v(A3 -I B3)v(A2 F B2)v(A1 /. B1) 

Substituting "AND" and "OR" functions, we have: 

•• 

•• 

•• 

•• 

C = [<A4· B4)v(A4· B4~ v [(A/B3)v(A3 · B3~ v [<A/B2)v(A2· B2)] v [<A1 · i\)v(A1· B1~ 

C = (A4• B4)v(A4 · B4)v(A3 · B3)v(A3 · B3)v(A2· B2)v(A2• B2)v(A1· B1)v(A1 • B1) 

The logic diagram for the above expression for the 4-bit comparator is as follows: 

121 

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

122 

10. 11. 4 THE "UNEQUAL TO" COM PARA. TOR (Continued) 

A4 - B4Li 

\.. ! COMPARA. TOR -
'RF., DOUT 

IA ·B/1 I 

••• 4 • oee ••• o•• o•• \. ~ 
C 41 l\3•1t= A4 41 > A3 t > A2 t > A1 t 

~! •••• ~-- • •• o•• • ••• Ar(! .... 
I 

~ - i 
~ = 

= 
.-t -

1f1 i:Xl -
N -i:Xl ·-

~ ~M "llli 
~ 

"" I 

~ =•• ••• -~-- i••· it-- - . 
.-t A2· B2--< 

B4 t > B3 t > B2 41 > Bl 41 N 

C1 < 
M 

< A·B~ "" •foe•• ••• o•• i••· < 1 1 

C1 I 

A 
1 ·B1'\._J~ 

The general equation for an "n"-bit "unequal to" comparator is as follows: 

C = (An f B0 )v(A0 _ 1 /. Bn_ 1)v(An_ 2 -/= Bn_2)v(An_3 ~ Bn_3)v .. . . . . v(A2 ~ B2)v(A1 ! B1) 

The transformed "AND11 and 11OR" logic equation, after substitution, is: 

C = (A · B )v(A · B )v(A 1 -B 1)v(A . 1- B 1)v(A 2-B 2)v(A 2· B 2)v(A 3 · B 3)v n o n n n- n- n- n- n- n- n- n- n- n-

The order and transformation of terms, like the "equal to" comparator, is also very 
straightforward for the "unequal to" comparator. 

10.11. 5 THE "GREATER THAN OR EQUAL TO" COMPARATOR 

> 

> 

For single digit binary numbers A and B, we want to sense when A is greater than or 
equal to B (A~ B) . Referring back to the main truth table, we note that A ~ B is represented 
logically by (AvB). The logic diagram is as follows: 
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10.11. 5 THE "GREATER THAN OR EQUAL T011 COMPARATOR (Continued) 

e e e COMP ARA TOR 
READOUT 

C e 

• • 

..... - ........... 
A • 

••• 
••• B. 

------t,a•· 
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From this point on, the general discussion follows closely to that of the "greater than" 
comparator except that the last term is 11A1 ~ B 111 instead of 11A1 > B 111 • For 2-bit binary 
numbers, the number A2A1 is greater than or equal to B 2B 1 (A2A1 ~ B2B1) when A2 > B 2 
£!: when A2 ~ B 2 and A1 ~ B1. This can be written logically as follows: 

C = (A2 > B2)v ~A2 ~ B2)· (A 1 ~ B1)] 

Substituting 11AND11 and "OR" functions for A2 > B2 , A2 ~ B2, and A1 ~ B1 , we have: 

C = (A2• B 2)v ~A 2vB2)· (A1 vB1)] 

The logic diagram for the above expression for the 2-bit comparator is as follows: 

COMPARATOR ---
••• READOUT •• •• 

C 

• • ••• ••• 

••• • •• 

•• •• 
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10, 11. 5 THE "GREATER THAN OR EQUAL TO" COMPARATOR (Continued) 

For a a-bit comparator, AaA2A1 ~ BaB2B1 when Aa > Ba .Q!: when Aa ~ BS and 

A2 > B2 .Q!: when Aa ~ Ba and A 2 ~ B2 and A1 ~ B1. This can be written logically as 
follows: 

C = (Aa > Ba)v [<Aa ~ Ba)· (A2 > B2>] v [(Aa ~ Ba)· (A2 ~ B2)· (Al~ B1>] 

Substituting "AND" and "OR" functions, we have: 

C = (Aa · Ba)v [<Aa vBa)· (A2· B 2)] v [<As vBa)· (A2vB2}- (A1 vi\>] 

The logic diagram for the above expression for the a-bit comparator is as follows: 

COMPARATOR 
READOUT 

••• 
C 

• • 

•• 

••• •••••• 

••• ••• ••• 

•• 

For a 4-bit comparator, where A4AaA2A1 ~ B4BaB2B1, we have: 

C = (A4 > B4)v [<A4 ~ B4)' (Aa > Ba>] v [<A4 ~ B4)· (Aa ~ Ba)· (A2 > B2>] v [<A4 ~ B4}· 

(Aa ~ Ba)· (A2 ~ B2)· (Al~ Bl)] 

Substituting "AND" and "OR" functions. we have: 

c ;; (A4 • B4)v 8A4 vB4)• (Aa· Ba>] v [<A4 vB4)• (As vBa)· (A 2• B2)] v [<A/B4) · (AS vBa)· 

(A2vB2)• (A1vii1>] 
The logic diagram for the above expression for the 4-bit comparator is as follows: 

wigfi
Stolen 2 Line Transparent
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10. 11. 5 THE "GREATER THAN OR EQUAL TO" COMPARATOR (Continued) 

COMPARATOR 
READOUT 

••• A4vi34 ~ 
L"i =•• ••• ◄••· ◄••· -

rt' ~-C t > A4 . > A3 t > A2 t > Al t .. 
t avB~ - -◄ 

•◄ •• r(i .I 1 ► L.(; • •• ••• • •• • •• _ .... 
.- A. 2 vB2.. 

,;I_ 

·~~ 
/ I 

"-~ 
"" 

C") 
~ Ill 

'<ti • I 
Ill 

A1 vB;---.. ! ••• ••• ••• ••• All 
,-t 

< 
B4 t > B3 t > B2 t > CN r:-- Bl t < 

C") 

< A ·BX.! '<ti .;ee o•• 4 ••• o•• < 4 4 -

The general logic equation of an "n"-bit "greater than or equal to" comparator is as 
follows: 

C = (A > B }v rcA ~ B ) · (A 1 > B 1)7 v [(A ~ B ) · (A 1 ~ B 1) • (A 2 > B 2)7 v 
n n ~ n n n- n- ~ n n n- n- n- n- ~ 

r(A ~ B ) · (A l ~ B 1> · (A 2 ~ B 2> · (A 3 > B 3~ v r(A ~ B ) · (A l ~ B 1> · ~ n n n- n- n- n- n- n- ~ ~ n n n- n-

(A 2 ~ B 2) • (A 3 ~ B 3) , (A 4 > B 4}] v ... .. . v [(A ~ B ) · (A l ~ B 1) · 
n- n- n- n- n- n- n n n- n-

••••.• • (AS~ B3) . {A2 ~ B2). (Al ~ Bl)] 

ote that the last term within each set (except the last set} of brackets is '' > "while all 
other terms are"~'- The last set of brackets has all 11~• terms. Also, each successive 
set of brackets contains one more term than the previous set. The very first term in the 
expression is always A > B . The 11terms" are those expressions within each set of 

n n 
parentheses . After substituting the equivalent "AND" and 11OR11 functions, the general 
equation becomes as follows: 

C = (A , B )v r(A vB ) · (A 1· B 1>] v r(A vB )· (A lvB 1>· (A 2· B 2>] v [<A vB )· n n ~ n n n- n- ~ n n n- n- n- n- n n 

(A 1vB 1) · (A 2vB 2)- (A 3 -B 3)7 v [ <A vB .) · (A 1vB 1)· (A 2vB 2)• 
n- n- n- n- n- n- ~ n n n- n- n- n-

(A 3vB a>· (A 4' B 4>] v ...... v r(A vB )· (A lvB 1>· . ... . . · (A3vB3)· (A2vB2) · n- n- n- n- ~ n n n- n-

(A1 vI\>] 

> 

> 
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10.11. 6 THE "LESS THAN OR EQUAL TO" COMPARATOR 

For single digit binary numbers A and B, we want to sense when A is less than or 
equal to B (A~ B). Referring back to the main truth table, we note that A~ B is 
represented logically by (AvB). The logic diagram is as follows: 

••• COMPARATOR 
REAOOUT 

C • 

• • 

••• 
A • 

B 

••• 

From this point on, the general discussion follows closely to that of the "less than" 

comparator except that the last term is 11A1 ~ B111 instead of 11A1 < B1". For 2-bit binary 
numbers, the number A2A1 is less than or equal to B2B1 (A2A1 ~ B2B1) when A2 < B2.£E 
when A2 ~ B2 and A1 ~ B1. This can be written logically as follows: 

C = (A2 < B2)v [<A2 ~ Bt · (A1 ~ B 1)] 

Substituting "AND" and 11OR11 functions for A2 < B2, A2 ~ B2 , and A1 ~ B1, we have: 

C = (A2· B2)v [cX2vB2) · (i\vB1)] 

The logic diagram for the above expression for the 2-bit comparator is as follows: 
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10.11. 6 THE "LESS THAN OR EQUAL TO" COMPARATOR (Continued) 

COMPARATOR -----
••• READOUT ••• ••• 

C 

• • .._ ...... • • 

•• 

••• • •• 

For a 3-bit comparator, A3A2A1 ~ B3 B2B1 when A3 < B3 or when A3 ~ Ba and 

A2 < B2 or when A3 ~ Ba and A2 ~ B2 and A1 ~ B1. This can be written logically as 

follows: 

C = (Aa < Ba)v [<Aa ~ Ba) ' (A2 < B2)] v [(A3 ~ Ba)· (A2 ~ B2)· (A1 ~ B1)] 

Su · · and "OR" functions we have: 

C = (Aa · B3)v (A3vBa)· (A2• B2) v (A3vB3) - (A2vB2)• (A1 vB1) 

The logic diagram for the above expression for the a-bit comparator is as follows: 

127 
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10.11. 6 THE "LESS THAN OR EQUAL TO" COMPARATOR (Continued) 

COMPARATOR 
READOUT 

••• 
C 

• • 

••••••••• 

•• 

•• 

••• ••• ••• 
For a 4-bit comparator, where A4A3A2A1 ~ B4B3B2B1 , we have: 

C = (A4 < B4)v [(A4 ~ B4)• (A3 < B3}] v [(A4 ~ B4)• (A3 ~ B3)· (A2 < B2)] v [<A4 ~ B4)· 

(A3 ~ B3)· (A2 ~ B2)· (Al~ Bl)] 

Substituting "AND" and 1'OR" functions, we have: 

C = (A4-B4)v (A4vB4)·(A3-B3) v (A4vB4}·(A3vB3)-(Az-B2) v[(A4vB4)•(A3vB3)• 

(A2vB2)· (i\vB1ij 
The logic diagram for the above expression for the 4-bit comparator is as follows: 
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10.11. 6 THE "LESS THAN OR EQUAL TO" COMPARATOR (Continued) 

COMPARATOR 
READOUT 

••• A vB ,. ••• ••• • •• • •• :~; 
> C e rt:-- - --.., A4 t A3 t > A2 t > Al . - A3vB,3. -

•◄ •• ,/. -foe•• • •• ◄-•• 4 ••• 

"! -(i - - .... w ,_ A2vB~ 

N ·NJ• i • ~. --.., 
/:Q ;;;. 

M ~ 
/:Q -~ • /:Q 

A1vB1 • -- f-e•• oee i••· o•• VII .... 
,-t 

< 
B4 •> B3 e B2 41 > Bl t CN n--< 

M 

< A4·B4v"" ••• ~ ••• ••• ••• < 

The general logic equation for an 1'n"-bit "less than or equal to" comparator is as 
follows: 

C = (A < B )v f(A ~ B ) · (A < B 1)1 v [<A ~ B ) · (A l ~ B 1)- (A 2 < B 2)1 v 
n n ~ n n n-1 n- ~ n n n- n- n- n- ~ 

r(A ~ B ) · (A l ~ B 1) · (A 2 ~ B 2> · (A 3 < B 3>] v r{A ~ B ) · (A l ~ B 1> · ~ n n n- n- n- n- n- n- L1 n n n- n-

(A 2 ~ B 2) · (A 3 ~ B 3)- (A 4 < B 4)] v [<A ~ B ) · (A l ~ B 1) · ...... 
n- n- n- n- n- n- n n n- n-

. (A3 ~ B3) · (A2 ~ B2)· (Al ;;a Bl)] 

> 

Note that the last term within each set (except the last set) of brackets is " < " while all 
other terms are "<1• The last set of brackets has all"<" terms. Also, each successive 
set of brackets contains one more term than the previo~ set. The very first term in the 
expression is always A < B . The "terms" are those expressions within each set of 

n n 
parentheses. After substituting the equivalent "AND0 and "OR" functions, the general 
equation becomes as follows: 

C ,= (A . B )v r(A vB }· (A 1· B 1>1 V [ex vB }· (A lvB 1>· (A 2· B 2>1 V [<X vB }· n n ~ n n n- n- J n n n- n- n- n- J n n 

(A lvB 1>· (A 2vB 2>· (A 3' B 3)1 V r(A vB }· (A lvB 1>· (A 2vB 2>· n- n- n- n- n- n- '.t ~ n n n- n- n- n-

(A 3vB a>· (A 4" B 4)1 v •...•. V r(A vB )· (A lvB 1>· ....... (A3vB3)· (A2vB2)· n- n- n- n- J ~ n n n- n-

(A 1 vB1)] 
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10. 11. 7 GENERAL COMPARISON 

This section interrelates all the six individual comparators with respect to each other. 
We now introduce COMPARISON DIAGRAMS for one-bit, 2-bit, and 3-bit numbers. These 
blocks show all the possibilities for comparison. 

1 = B2B] A2A1 > B 

00 01 10 11 
A = :a A >B 00 00 00 00 

0 1 00 01 10 11 
0 0 01 01 01 01 
0 1 00 01 10 11 
1 1 10 10 10 10 

A <B A = B 00 01 10 11 
11 11 11 11 

rn 1 < B2Bl k\2Al = 

Al = B3B2Bl A3A2Al > B3B2Bl 

000 001 010 011 100 101 110 111 
000 000 000 000 000 000 000 000 
000 001 010 011 100 101 110 111 
001 001 001 001 001 001 001 001 
000 001 010 011 100 101 110 111 
010 010 010 010 010 010 010 010 
000 001 010 011 100 101 110 111 
011 011 011 011 011 011 011 011 
000 001 010 011 100 101 110 111 
100 100 100 100 100 100 100 100 
000 001 010 011 100 101 110 111 
101 101 101 101 101 101 101 101 
000 001 010 011 100 101 110 111 
110 110 110 110 110 110 110 110 
000 001 010 011 100 101 110 111 
111 111 111 111 111 111 111 111 

A3A01 < B3B2Bl A3A2Al = 

Note that the "A = B" region is the upper-left-lower-right diagonal while the "A > B" 
region is to the upper right of the diagonal and the "A < B" region is to the lower left of the 
diagonal. The above diagrams include all possibilities of comparison. If we pick one cell 
at random from each diagram, this cell may represent A = B, or A > B, or A < B. Thus 
we can represent the total possibilities of comparison (C-r> as follows: 

ICT = (A = B}v(A > B)v(A < B) I 
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10. 11. 7 GENERAL COMPARISON (Continued) 

In order to determine a region of comparison, we must set at least one of the "OR"-ed 
comparison terms equal to zero. The term set equal to zero will then drop out. The 
single deletion possibilities are: 

C = (A = B)v{A > B) 

This is the same as A~ B. 

C = {A = B)v(A < B) 

This is the same as A ~ B. 

C = {A > B)v(A < B) 

This is the same as A f B. 

{A < B) deleted 

(A > B) deleted 

(A = B) deleted 

If we delete any two terms, this will isolate the (A = B), {A > B), or {A < B) regions 
depending on which two terms are deleted. 

Also, we can delete all comparison possibilities leaving nothing. However, we can 
negate CT as follows: 

CT = (A = B)v{A > B)v(A < B) 

Using DeMorgan's Theorem, we obtain: 
-- --CT = (A = B)• {A > B)· {A < B) 

Now,in order to determine a comparison, we must again set at least one of the "AND"-ed 
comparison terms equal to zero. Then the term set equal to "0" becomes 110'11 or 11111 and 
drops out when "AND"-ed with the rest of the expression. The single deletion possibilities 
are: 

- - --c = (A = B) · {A > B) (A < B) deleted 

Now let us substitute the "AND" and "OR" comparison functions and simplify the expression. 

C = [ {AvB)· {AvB)] · (AvB) 

= [{Av~)v(AvB)] · (A· B) 

= [(A· B)v(A· B)] · (A· B) 

= (A· B) 
IC = A < B I Substituting back the comparison expression. 

C = (A = B)· (A>B) and negate again: 

c = (A=l3)· {A > B) 

C = {A = B)v(A > B) 

IC = (A~ B) I 
Using DeMorgan's Theorem. 

Now, we go back to 

This means that if we wire up a comparator for A~ B, we also have an A< B comparator 
by reading out C instead of C. 

The other possibilities are: 

C = (A = B) · (A < B) 

C = (A > B). (A < B) 

Also, deleting two terms, we have: 

(A > B) deleted 

(A = B) deleted 
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IO. 11. 7 GENERAL COMPARISO (Continued) 

C = (A = B) (A > B) and (A < B) deleted 

C = (A > B) {A = B) and (A < B) deleted 

C = (A < B) (A = B) and (A > B) deleted 

By substituting and working out the "AND" and "OR" logic for the above expressions, 
we can show that we have a different comparison by reading out C instead of C. The "C" 
and 11 C'11 comparators are as follows: 

1f C = (A > B) then C = (A~ B) 

If C = (A< B) then C = (A~ B) 

If C = (A = B) then C "' (A/ B) 

1f C "' (A f B) then C = (A = B) 

If C = (A~ B) then C = (A< B) 

1f C = (A~ B) then C = (A> B) 

Thus, if we build one comparator, we have actually built two! ! ! 

The comparison diagram may be used to prove compari son identities in the same 
manner as a truth table. We will use the 2-bit comparison diagram for the discussion. 
The quantity A is represented by marking all cells with a dot ''e" that have an A1 (i. e. , 
A = I). The Jumbers are not shown here again, but should be referred back to the main 
cJmparison diagram. A1 is represe.nted as follows: 

• • 
• • 
• • 
• • 

Refer back to the main comparison diagram and note that each cell with A1 = 1 is dotted. 

If we represent A1 · B1, we must dot all cells with A1 = B1 = I. The A1 and B1 must be 
identical in all dotted cells. 

• • 
• • 

wigfi
Stolen 2 Line Transparent
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10.11. 7 GENERAL COMPARISON (Continued) 

To represent A1 vB1, we must dot all cells with A1 = 1 and all cells with B1 = 1, but in this 

case we look for either one case or the other, or both . 

• • 
• • • • 

• • 
• • • • 

The following examples show cell plots of various comparison expressions: 

• • • • • • • • • • • • • • 

When we "OR" two or more comparison diagrams, we merely superimpose the diagrams. 
The diagram to the right shows the 11OR11-ed representation of the first three. Note that 
the A > B region is filled. When a comparison region is filled, and the remaining cells 
are open, the "OR"-ed expression represents an identical comparison expression as is the 
case for the above example of A > B. ote that for an equivalent comparison expression, 
all cells in a comparison region must be filled and the remaining cells must be open. If 
this condition does not exist, then the expression does not represent a comparison identity. 

_5:ons~er the examples (A/B2), (A2• B2), (A1 · B1), (A1 · B1) and (A2· B2)v(A2• B2'v 
(A1 · B1)v(A1 · B1) as shown below. 

• • • • • • • • • • • • • • 
• 
• 

• • • • • • • • • • • • 
(A2· B2'v(X2· B2)v 

(A1 · B 1)v(A1 · B 1) 
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10. 11. 7 GENERAL COMPARISO (Continued) 

The 11OR11-ed function to the right has the regions filled which represent A > B or A < B. 
This is the same as A A t B B or A I B for which the expression shown is a true identity. 

2 1 2 1 
If we want to superimpose cells by 11AND11-ing, the process becomes more complicated 

and we must use more than a dot. For instance, if we represent one expression by dots, 
the other by "x"s, another by '0"s and another by 11+11s, then we can only count a super­
imposed cell as Wl,eg when all different symbols are superimposed on each other. Consider 
(A2 vff2), (A2 vB2), (A/1\), (A.1 vB1), and (A/~ 2) · (A.2 vB2) • (A1 vB1) • (A.1 vB1). The 
comparison diagrams are as follows : 

• • • • ( 1 1 

• • • • ... 

• • '7 1 

• • 

~ + 
"""I , + + .... + 

+ !+ 

+ 
+ 
+ 
+ 

+ 
+ 

(A2vB2)• (A2vB2)• 

(A1 vB1)• (A1 vB1) 

The "AND"-ed function to the right has only the top-left-bottom-right diagonal which 
contains all 4 superimposed symbols. This is the 11=11 diagonal and hence this represents 
A 2A1 = B2B1 or A = B for which the expression shown is a true identity. 

10. 12 THE TIME MACHJNE 

ow we are ready for a fantastic adventure in time--not in the sense of going back in 
time, but in the sense of keeping and determining time. In order to get an idea of the vast 
capability that flip-flops have for determining time, let us set up a 40-bit binary "up" 
counter and trigger the first flip-flop at a rate of one pulse per second. 

#40 

ra ra ra ra • 
1 

PULSE 
PER 

SECO D 

How long would it take the last light to come on ? An hour? A day? Maybe a year? The 
true, but fantastic answer is that you will never live long enough to see it come on I ! I I 
Neither will your grandchildren--nor their grandchildren. either will 200 successive 
generations of your descendents 11 ! ! I Let us assume that we started the counter going on 
zero hour, Monday, January 1, 1968--the year this book was written. Light #40 will then 
come "on" on Sunday, May 2, 19388 A. D. I! 1 The following table shows the light numbers 
and the almost unbelievable dates they will come on! 
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10. 12 THE TIME MACHINE (Continued) 

TIME 11ON" DATE 11ON11 DAY OF 
LIGHT# DAYS HRS:MIN:SEC MO/DAY/YR WEEK 

1 00 :00 :01 JAN 1, 1968 M 
2 00 :00 :02 JAN 1, 1968 M 
3 00:00:04 JAN 1, 1968 M 
4 00:00:08 JAN 1, 1968 M 
5 00:00:16 JAN 1, 1968 M 
6 00:00:32 JAN 1, 1968 M 
7 00:01:04 JAN 1, 1968 M 
8 00:02:08 JAN 1, 1968 M 
9 00:04:16 JAN 1, 1968 M 

10 00:08:32 JAN 1, 1968 M 
11 0Q :17:04 JAN 1, 1968 M 
12 00:34:08 JAN 1, 1968 M 
13 01 :08:16 JAN 1, 1968 M 
14 02:16:32 JAN 1, 1968 M 
15 04:33:04 JAN 1, 1968 M 
16 09 :06 :08 JAN 1, 1968 M 
17 18:12 :16 JAN 1, 1968 M 
18 ld 12:24:32 JAN 2, 1968 T 
19 3 d 00 :49:04 JAN4, 1968 TH 
20 6d 01:38:08 JAN 7, 1968 SN 
21 12 d 03 :16:16 JAN 13, 1968 s 
22 24 d 06:32:32 JAN 25, 1968 TH 
23 48 d 13:05:04 FEB 18, 1968 SN 
24 97 d 02 :10:08 APR 7, 1968 SN 
25 194 d 04:20:16 JUL 13, 1968 s 
26 388 d 08 :40:32 JAN 23, 1969 TH 
27 776 d 17 :21:04 FEB 15, 1970 SN 
28 1553 d 10 :42:08 APR 2, 1972 SN 
29 3106 d 21 :24:16 JUL 3, 1976 s 
30 6213 d 18:48:32 JAN4, 1985 F 
31 12427 d 13 :37:04 JAN 9, 2002 w 
32 24855 d 03 :14 :08 JAN 19, 2036 s 
33 49710 d 06 :28 :16 FEB 5, 2104 T 
34 99420 d 12 :56 :32 MAR 11 , 2240 w 
35 198841 d 01 :53:04 MAY 21, 2512 s 
36 397682 d 03 :46:08 OCT 9, 3056 TH 
37 795364 d 07:32:16 JUL 18, 4145 SN 

38 1590728 d 15:04:32 JAN 31, 6323 T 
39 3181457 d 06:09:04 MAR 3, 10678 F 
40 6362914 d 12:18:08 MAY 2, 19388 SN 

(RESET) 12725828 d 00:36:16 AUG 31, 36808 TH 
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. 10. 12 THE TIME MACHINE (Continued) 

Note that the "action" begins after the eighteenth light. The counter will reset on 
Thursday, August 31, 36808 at 12:36:16 A. M. 11 The calculations of the dates in the table 
become complicated after 2000 A. D. , and we must consider "leap year" corrections in 
order to pinpoint the correct date and day of the week. Just thinking about these dates 
shows us how small a speck we are in the sands of time I ! ! 

Now let us take a closer look at what a YEAR really is. The astronomical books 
define a year as 365d 05h 48m 46s (365 days, 5 hours, 48 minutes, and 46 seconds). If we 
were to have only 365 days in every year, the total days for 4 years would be 1460 days. 
However, if we consider the extra 5h 48m 46s, four years will produce a loss of 23h 15m 4s 
(almost 24h). If we add an extra day to every fourth year (to that year which is divisible by 
4), we will compensate for the lost 23h 15m 4s, but we will also have an extra 44m 56s too 
much. Therefore, every four years will contain 1461 days but will gain 44m 56s on what 
the true calendar year should be. Let us consider an interval of 400 years. This will 
contain 100 4-year totals of 1461 days. However, the 44m 56s, when multiplied by 100, 
amounts to 74h 53m 20s (slightly more than 3 days or 72 hours). Therefore, we must sub­
tract 3 days every 400 years and can easily do this by deleting 3 leap years from centuries 
not divisible by 400 and by retaining the leap year for centuries that are divisible by 400, 
(Note that in our era, 1700, 1800, and 1900 were not leap years, but the year 2000 will be 
a leap year.) 

The above discussion defines the present Gregorian calendar with a first-order 
correction (leap year every fourth year) and second-order correction (leap century every 
fourth century). The old Julian calendar did not use the second-order "century" correction 
and has included too many leap years in the century years. Now, we must look still 
further into the present Gregorian calendar if we are to calculate dates such as 36,808 A. D. 
in the previous table, We must now determine a third-order correction, In doing this, we 
will assume that the 365d 5h 48m 46s year length remains unchanged. In reality, scientists 
estimate that the day length will gain about one second each century due to slowdown of the 
earth's rotation and that the earth's orbital slowdown will cause further effects; but we will 
not include these estimates in our calculations. Now let us again consider an interval of 
400 years and call it a "QUAD" century. After the Gregorian calendar corrections for 
every "QUAD", there is still an excess of 2h 53m 20s from the true calendar date. An 
interval of 216 "QUADS" will yield 624h OOm OOs too many, which -must be deleted. Now, 
624 hours equal 26 days exactly. We must now delete 26 days every 216 "QUADS". To do 
this, we will delete leap years every eighth "QUAD" starting with 5200 A. D. for a third­
order correction. However, 216 + 8 equals 27 days deleted in 216 "QUADS", or one day 
too many deleted. This can be compensated by not deleting a leap year every twenty-seventh 
interval starting with 88,400 A. D. This completes all the corrections necessary for this 
scheme and the cycle may be repeated over and over again as far as we might go--even to 
1,000,000 A. D. ! I I 

Briefly summarized, our calendar scheme is as follows: 

Every 4 years: LEAP YEAR (years divisible by 4) 

Every 4th century: LEAP YEAR ("QUAD" century years divisible by 400) 

Every 8th "QUAD" century interval (starting with 5200): LEAP YEAR only 
every 27th interval 

The days of the week may be calculated by referring to the perpetual calendar in any 
almanac which shows the dates, years, and days of the week for a 400-year interval. Then 
we have all the information necessary when we note that if we add or subtract 400 years to 
each year shown, the months and days of the week will be identical. For instance, a 
calendar for 1968 would be the same as the calendar for 2368, 2768, and 3168. However, 
if we pass any "interval" "QUAD" century years such as 5200, 8400, etc., we must subtract 
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10. 12 THE TIME MACHINE (Continued) 

one weekday for each "interval" . For instance, January 1, 1968 was on Monday . Such 
would be the case for January 1, 2368 or January 1, 2768 or January 1, 3168. The years 
3568, 3968, 4368, 4768 and 5168 would also have January 1 on Monday. However 1 5568 
would have January 1 on Sunday because 5200 is not a leap year. Likewise, January 1, 
9768 will be on Saturday because 5200 and 8400 are not leap years. The table following 
shows the "QUAD" century leap years from 2000 A. D. to 101,600 A. D. The dates for the 
"ON" times of the last bits of the 40-bit binary "up" counter were determined from this 
table. 
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10.12 THE TIME MACHINE (Continued) 

"QUAD" CENTURY YEARS 
("L" = Leap Year; 11

••11 = Normal Year; "4#1" = 27th 
Interval Leap Year) (1 year = 365d 05h 48m 46s) 

2000 L 22000 L 42000 L 62000 L 82000 **25 
2400 L 22400 L 42400 L 62400 L 82400 L 
2800 L 22800 L 42800 L 62800 **19 82800 L 
3200 L 23200 L 43200 L 63200 L 83200 L 
3600 L 23600 L 43600 **13 63600 L 83600 L 
4000 L 24000 L 44000 L 64000 L 84000 L 
4400 L 24400 **7 44400 L 64400 L 84400 L 
4800 L 24800 L 44800 L 64800 L 84800 L 
5200 ••1 25200 L 45200 L 65200 L 85200 **26 
5600 L 25600 L 45600 L 65600 L 85600 L 
6000 L 26000 L 46000 L 66000 ••20 86000 L 
6400 L 26400 L 46400 L 66400 L 86400 L 
6800 L 26800 L 46800 **14 66800 L 86800 L 
7200 L 27200 L 47200 L 67200 L 87200 L 
7600 L 21600 ••8 47600 L 67600 L 87600 L 
8000 L 28000 L 48000 L 68000 L 88000 L 
8400 ••2 28400 L 48400 L 68400 L 88400 LH 
8800 L 28800 L 48800 L 68800 L 88800 L 
9200 L 29200 L 49200 L 69200 ••21 89200 L 
9600 L 29600 L 49600 L 69600 L 89600 L 

10000 L 30000 L 50000 ••15 70000 L 90000 L 
10400 L 30400 L 50400 L 70400 L 90400 L 
10800 L 30800 ••9 50800 L 70800 L 90800 L 
11200 L 31200 L 51200 L 71200 L 91200 L 
11600 **3 31600 L 51600 L 71600 L 91600 ••1 
12000 L 32000 L 52000 L 72000 L 92000 L 
12400 L 32400 L 52400 L 72400 **22 92400 L 
12800 L 32800 L 52800 L 72800 L 92800 L 
13200 L 33200 L 53200 **16 73200 L 93200 L 
13600 L 33600 L 53600 L 73600 L 93600 L 
14000 L 34000 ••10 54000 L 74000 L 94000 L 
14400 L 34400 L 54400 L 74400 L 94400 L 
14800 **4 34800 L 54800 L 74800 L 94800 **2 
15200 L 35200 L 55200 L 75200 L 95200 L 
15600 L 35600 L 55600 L 75600 **23 95600 L 
16000 L 36000 L 56000 L 76000 L 96000 L 
16400 L 36400 L 56400 **17 76400 L 96400 L 
16800 L 36800 L 56800 L 76800 L 96800 L 
17200 L 37200 **11 57200 L 77200 L 97200 L 
17600 L 37600 L 57600 L 77600 L 97600 L 
18000 ••5 38000 L 58000 L 78000 L 98000 ••3 
18400 L 38400 L 58400 L 78400 L 98400 L 
18800 L 38800 L 58800 L 78800 **24 98800 L 
19200 L 39200 L 59200 L 79200 L 99200 L 
19600 L 39600 L 59600 **18 79600 L 99600 L 
20000 L 40000 L 60000 L 80000 L 100000 L 
20400 L 40400 ••12 60400 L 80400 L 100400 L 
20800 L 40800 L 60800 L 80800 L 100800 L 
21200 **6 41200 L 61200 L 81200 L 101200 **4 
21600 L 41600 L 61600 L 81600 L 101600 L 
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10.12. 1 THE TIME MACHINE CLOCK 

Let us now return to our humble mid-1900's and determine how to build a gated logic 
time clock. In fact we can build a very accurate time clock that will automatically give the 
time, exact day of the month, month, and year. The clock can also sense leap years, leap 
centuries, and leap twenty-seventh 8-"QUAD" intervals if necessary. The discussion here 
is confined to a clock that will determine leap years and leap centuries. In order to do 
th.is, we will break down the clock as follows: 

1. "SECOND" COUNTER 

2. "MINUTE" COUNTER 

3. "HOUR" COUNTER 

4. "DAY-OF-THE-MONTH'' COUNTER 

5, "MONTH'' SHIFT REGISTER 

6. "DAY-MONTH-YEAR" LOGIC INTERFACE 

7. "YEAR" BCD DECADE COUNTER 

8. "LEAP-YEAR, LEAP-CENTURY, CENTURY" LOGIC 

INTERFACE 

Before we can operate a clock properly, we need a good timing pulse of one pulse per 
second. The pulse accuracy is very important and will not properly operate the clock if 
variations can occur. For instance, an accuracy of 1% may be thought to be good, but a 
pulse of 1 second ±1% may gain or lose as much as 15 minutes a day! 11 An accuracy of 1 
second ±. 1 % will gain or lose about 1. 5 minutes a day, or about 45 minutes a month I I I A 
pulse of 1 second .±. 01 % may gain or lose 4. 5 minutes a month which represents the 
accuracy of a cheap wristwatch. A pulse of 1 second .±. 001 % may gain or lose . 45 minutes 
a month or about 5. 4 minutes a year. A pulse of 1 second±. 0001% may gain or lose. 54 
minute, or about 33 seconds per year, which represents a high-priced precision wrist­
watch. A wall clock timed from the A. C. line has an accuracy better than.±. 000001%. The 
most accurate timing device to date is the atomic clock and has an accuracy on the order of 
one part in ten billion (±. 0000000001 seconds or ±. 00000001 %) . It should be very apparent 
that an ordinary timing pulse generator circuit is not accurate enough to drive a clock I 
However, a very accurate timing pulse from the A. C. line (~ee following diagram) is more 
than sufficient for this project. The 60-cycle A. C. must be converted to a square wave by 
use of a flip-flop and then be divided by 60 (i.e. , be divided by 10 and then by 6) to provide 
the 1-second pulse needed for this clock. A ''second" or "minute" counter described in this 
section may be used to convert the 60-cycle sine wave to the required 1 cycle per second 
square wave. 
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10. 12. 1 THE TIME MACHINE CLOCK (Continued) 

TIMI G FROM THE A. C. LINE 

-115 VAC 
60 Hz 
A.C. 
LINE + 6VDC 

6.3V 
STEP-DOW 

TRA SFORMER 
(any kind) FF-1 

TIMING PULSE TO 
TRIGGER OTHER CIRCUITS 

FILTER CAPACITOR 
(OPTIO AL) 

* VALUES OF 5000 TO 10000 MAY BE USED. 
** VALUES OF 50 µ.1 to 300 µ.f MAY BE USED. 

ADJUST ABOVE VALUES IF ILTERING IS UNSATISFACTORY 
WITH VALUES SHOWN IN MAIN CIRCUIT. 

-

wigfi
Stolen 2 Line Transparent
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10. 12. 1 THE TIME MACHINE CLOCK (Continued) 

Let us now proceed to build the clock. The timing pulse is fed directly into the first 
counter or the "second" counter. The "second" counter is a 2-stage BCD counter which is 

gated lo count lo 59 In BCD( ~ D and then reset itself, throwing out a "carry" lo the 

"minute" counter which is built exactly the same way. The following logic diagram shows 
the construction for the "minute" and 11 second'' counter. 

''MINUTE" AND "SECOND" COUNTERS LOGIC DIAGRAM 

CARRY 
INPUT TO 
"MINUTE" 
COUNTER 

-OR­
''HOUR'' 

COUNTER 

r.1 

"SECOND" 
TIMING PULSE 

-OR­
"SECO D" 

CARRY 
INPUT 

The "carry" from the "minute" counter is then fed into the input to the "hour" counter . 
Logic diagrams are shown for two possibilities for an "hour" counter, either one of which 
may be used. The first is an A.M. -P. M. 12-hour BCD counter which is gated to count to 
11 and reset and will read out as A. M. (Ante Meridiem or MORNING) or as P. M. (Post 
Meridiem or EVENING) hours. The "A. M." flip-flop readout must be set to the opposite 
of the "P. M. '' flip-flop readout. The "carry" is generated from the "P. M." flip-flop. The 
24-hour BCD counter is gated to cowit to 23 and then reset. It will count directly from 
"zero" hour (midnight) to 23 hours (11:00 P. M.) and then reset. The "carry" is generated 
by the last stage. The logic diagrams are as follows: 
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10. 12. 1 THE TIME MACHINE CLOCK (Continued) 

4 

••• 

CARRY 
INPUT TO ---+-... 

II DAY" cou TER 

20 

•• 

••• 

"MINUTE" 
CARRY 
INPUT 

• •• 

•• 
10 

••• 
24-HOUR COU TER LOGIC DIAGRAM 

"P.M." 

... 
"A.M." __ ,._ 

READOUT 

Set "PM" = "AM" 
Midnight = "AM" 
Noon = "PM" 

CARRY 
--------INPUT TO 

"DAY" COU TER 

"MINUTE" 
CARRY 
INPUT 

12-HOUR A. M. -P. M. COUNTER LOGIC DIAGRAM 
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10. 12. 1 THE TIME MACHINE CLOCK {Continued) 

Now we come to the most complicated of all the counters, the 28-29-30-31 day-of-the-­
month BCD counter. This counter will sense "month" and "leap year" inputs and count to 
the proper number of days, depending on the month and whether or not we have a leap year. 
The 11hour11 "carry" is used to drive the day-of-the-month counter and is fed into the first 
stage. The "day-of-the-month" or "day" "carry" is generated at the last stage and is used 
to change the month when triggered . The open inputs to some gates labeled "28", "2911 , 

"30", "29", etc . , are those "senses" which are generated by day-month-year logic inter­
face . Those 11senses" are wired directly into this counter and cause the decision as to how 
many days to which to count before resetting and changing the month. The logic diagram is 
as follows: 

28-29-30-31 DAY-OF-THE-MONTH COUNTER WGIC DIAGRAM 

CARRY 
INPUT TO 
12-MONTH 

SHIFT REGISTER 

~ .. 

CARRY 

"HOUR" 
CARRY 
INPUT 

RESET PULSE 

30 
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10. 12. 1 THE TIME MACH1NE CLOCK (Continued) 

The 12-month shift register is very straightforward and needs no further explanation. 
It is triggered by the day-of-the-month "carry" and generates a "carry11 from 11DEC11 to the 
''year11 counter. The logic diagram is as follows: 

CARRY! PUT 
TO "YEAR" 
COU TER 

12-MONTH SHIFT REGISTER LOGIC DIAGRAM 

"DAY" 
CARRY 
INPUT 

The "day-month-year'' logic interface is used to generate the decision-making informa­
tion for the day-of-the-month counter. The 28, 28, 29, 29, 30, 30, 31, 31 outputs are 
shown and are wired directly into the positions shown in the "day-of-the-month" counter~ 
The "month" interface inputs are also labeled with the name of the appropriate month. The 
LY, LC, C, and C inputs will be discussed later. The logic diagram is as follows: 

* OTE: Outputs~ and JO not used in "day-of-the-month" counter . 
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10. 12. 1 THE TIME MACHINE CLOCK (Continued) 

INPUTS 

JUL-------­
A UG 

OCT 
DEC 

INPUTS 

DAY-MO TH-YEAR INTERFACE LOGIC DIAGRAM 

The "year11 BCD decade counter consists of repeated stages of BCD counters where 
one counter 11carries11 into the next one . 
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10. 12. 1 THE TIME MAClilNE CLOCK (Continued) 

DEC 

r.1 

DECADES 

r.1 r.1 

r.1 
CE TURIES 

r.. 
MILLENIUMS 

YEAR BCD DECADE COUNTER LOGIC DIAGRAM 
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10. 12. 1 THE TIME MACHINE CLOCK (Continued) 

Now we come to the final logic interface-the "leap year (LY), leap century (LC), and 
century year (C) 11 logic interface. The inputs to this logic are shown with the numbers 
assigned the flip-flops in the BCD "year" decade counter. Note that we also need a "non­
century" output (C). Essentially, we must test divisibility by 4, 100, and 400. A year is 
divisible by 4 if the first flip-flop in the "decade year" stage is "1" and the second "year" 
flip-flop is "on" ,and the first "year" flip-flop is "l" , JU: if the first "decade year" 

flip-flop is "off" ,WliJ the first two "year" flip-flops are "off11• Logically, this is shown by 
(W· 2· T)v(lO· 2 · 1 ). We have a century year if all flip-flops in the "year" e-nd "decade year" 
are "off". Logically, this is shown by (80· 40· 20· Io. 8· 4-2• l). We have a "QUAD" century 
year (divisible by 400) if the first flip-flop in "millenium" is 11111 ~ the second "century" 
flip-flop is "on" and the first "century" flip-flop is "1": .2!,if the first 
"millenium" flip-flop is "off" and the first two "century'' flip-flops are "off";and all "year" 
and "decade year" flip-flops must also be "off". Logically, this is shown by: 

[(i°ocio• 200· l()())v(lOOO· 200· Tim>] · (80· 40· 20· 10· 8· 4· 2· 1) 
The logic diagrams for the interface are as follows: 

c10- 2-I>vc10. 2-T> 

(80· 40· 20• 1()• 8·4· 2·1) 

[(1000· 200· lOO)v(lOOO· 200· 100)] • (80· 40· 20· 10· 8· 4• 2·1) 

DIVISIBLE BY 4 

DIVISIBLE BY 100 

DIVISIBLE BY 400 

io 
2 
1 

10 
2 

1 

80 
40 
20 
io 
8 - CENTURY SENSE 
4 
2 
1 

1000 
200 

100 

1000 
200 

Too 

LEAP CENTURY SENSE 
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10.12.1 THE TIME MACHINE CLOCK (Continued) 

Now that we have figured out how to build the specific parts of the clock, we will again 
illustrate in a graphic summary how they are put together. 

"DAY-OF-THE- "HOUR" 11MINUTE11 "SECOND" "ONE-SECOND" 
MONTH'' ~ ..... +- +- TIMING 
COUNTER ~ COUNTER COUNTER COUNTER PULSE 

"DA Y-MONTH-YEAR11 -LOGIC INTERFACE -.... 

4 • 

"LEAP-YEAR, LEAP-CENTURY, 
CENTURY" --

LOGIC INTERFACE 

"YEAR" "12-MONTH" __. 
-.... 

COUNTER SHIFT REGISTER 

i 
We could also combine the clock and the 40-bit "up11 counter, trigger them simultaneously, 

set the clock to the proper date, and the clock will then automatically read out the date for 
the binary display . If this is done, the following binary conversions for years, hours, and 
minutes into seconds will be very helpful. 

CONVERSION TO CONVERSION TO 
UNIT SECONDS (DECIMAL) SECONDS (BINARY) 

MINUTE 60 111100 

HOUR 3,600 111000010000 

DAY 86,400 10101000110000000 

WEEK 604,800 10010011101010000000 

YEAR 31,536,000 1111000010011001110000000 

LEAP YEAR 31,622,400 1111000101000010100000000 

4-YEAR CYCLE 126,230,400 111100001100001111110000000 

(1461 DAYS} 

A suggested light configuration for a combined clock and 40-bit 11up" counter is shown 
on the following page. 

wigfi
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10. 12. 1 THE TIME MACHINE CLOCK (Continued) 

"WE ARE BUT A St.lALL GRAIN IN THE S"NDS OF TIME" - - - LIBE 

.40 . 39 . 38 e ;H . 36 . 3!', . 34 . 33 
MAY 2, 1938B MAR 3. l067B JAN 31, 6323 JUL 18. 414!1 OCT 9. 30~ MAY 21, 2!112 M"R II, 2240 FEB:!, 2104 

12:18:08 06:09:04 1!1·04:32 07 . 32 :16 03 :46 .08 Ol:~3:04 12. !',6 :32 oe ,2e :16 
SUNDAY FRIDAY TUESDAY SUNO"Y THURSDAY SATURDAY WEDNESDAY TUEB·D"Y 

RESET 

AUG 31. 36809 

00 ·35 :16 

THURSDAY 

. 32 . 31 . 30 . 29 . 28 e 21 . 26 . 2!1 
JAN 19, 2036 J"N 9, 2002 JAN 4 , l98~ JUL 3 , 1976 APR 2. 1972 FEB l!I, 1970 JA.N 23. 1969 JUL 13. 1968 

03 14 08 13 37.04 1848:32 21 : 24.16 10:42 08 17 :21 04 08 40 32 04 20 16 
SATURDAY WEDNESDAY FRIDAY SATUROO SUNDAY SUNO"'I' THURSDAY SATURDAY 

. 24 e 23 e 22 . 21 e 20 e 19 e ia e n 
"PR 7, 1968 FEB 18. 1968 JAN 2:1. 1868 J"N 13. 1968 JAN 7, 1968 JAN 4, 1968 JAN 2. 1968 JAN I , 1968 

02 10 08 13 O!'J ·o4 06 32 32 03 16 16 01 38 ·09 00 49 04 12 24 32 18 12 16 

SUNDAY SUND"Y THURSDAY SATURDAY SUNDAY THURSDAY TUESDAY MONDAY 

e 16 e l!I e 14 e 13 e 12 e 11 e 10 e s 
JAN I, 198B J"N 1. 1968 JAN 1, 1968 JAN I. 1968 JAN I, 1968 JAN I. 1968 J"N I , 1968 JAN I . 1968 

09 06 08 04 :33 :04 02 18 32 01 08 16 00 :34 08 00 17 04 oo oa ,32 00 :04 16 

MONOAY t.lONOAY MONDAY MONDAY t.lONDAY MONDAY t.lONOAY t.lONOAY 

ea e1 e s e ~ e• e3 e 2 e1 
JAN I. 1968 JAN I. 1968 JAN I , 1988 JAN I, 1968 JAN I. 196B JAN I. 1968 JAN I. 1968 JAN I. 1968 

00 02 08 00 01 04 00 00 32 00 00 16 00 00 08 00 00 04 00 00 02 00 00 01 

MON DAY MONDAY MO-Y MONOAY MONDAY MONDAY MONO,t,.Y MONDAY 

THE TIME MACHINE 
~~::e ea ea ea e a ea e a e e 

... , R 
ea e ea e a ea 

DEC AUG ::::::::::::P.M. 

LEAP . e4 ... e4 e4 e4 e 4 • e e .4 e ... e4 e 4 .4 . 4 
CENTURY NOV JUL MAR A.M . 

• e ~ e 2 e z e 2 e 2 e2 e2 e 2 e e 2 e 2 e 2 e 2 e 2 e 2 
OCT JUN FEB ., e1 e1 e1 e1 e1 • e • ., e1 e 1 e 1 e 1 e 1 e 1 e 1 

1 1100.000 10.000 ,ro oo 100 10 I 
SEP MAY J,t,.N 

DAY OF MONTH HOURS MINUTES SECONDS 

YEARS A.O. MONTH TIME CONTROL PANEL 
THIS EKHIBIT WMJ OONATED BY LIBE COMPANY TO Sf«JW THE 8"SIC USE OF BINARY El.ECTRONIC COMPUTER CIRCUITS FOR KEEPING TIME. ,t,.NQ TO 
FAMUAAIZE PEOPLE WITH THE BINARY NUMBER SYSTEM . THE CLOCK WAS ST ... RTEO AT oo·oo,oo ... . M. 1/1 /68 THE 40-BIT ["8Il",BINARY DIGIT] 
"UP" COUNTER ABOVE [BIT LIGHTS NUMBERED '. SHOWS THE DATE ANO TIME EACH LIGHT WI LL FIRST COWE ON . THE FIRST LIGHT IS TRIGGERED 
ONC£ EACH SECOND E,t,.CH SUCCESSIVE LICHT T,t,.KES TWICE THE Ti t.IE OF THE PRECEDING LIGHT TO COMPLETE A CYCLE AND WILL TURN ON 
ONLY WHEN THE PRECEDING LIGHT GOES OFF NOTE THAT THE LAST LIGHTS TAKE ,t,. LONG LONG TIME TO COME ON I THE LIGHT PATTERN Will 
NOT REPEAT ITSELF FOR NEARLY 3!1.000 YEARS .1 ONE CAN COME BACK ,t,.GAIN AND AG,t,.IN TO OBSERVE THE CH,t,.NGING LIGHT PATTERN 
THROUGHOUT THE YEARS .1 - - THE TIME CONTROL PANEL CLOCK BH<MS THE CORRESPONOING YEAR, MON™. DAY, HOUR, MINUTE, ANO SECOND 
IN GREENWICH MEAN TIME (GMT OR "Z" TIME ) IN ORDER TO TRANSL,t,.TE THE BINARY TIME CONTROL LIGHTS BACK TO OUR OWN NUMBER 
SYSTEM, NOTE THE NUMBERS BESIDE E~H LIGHT. FOR E,t,.CH LIGHT COLUMN. ADD UP ,t,.LL NUMBEl!S WHOSE CORRESPONDING LIGHTS ARE ON 
A COLUMN WI™ ALL LIGHTS OFF REPRESENTS A "O" BE SURE TO DROP BY ,t,.ND OBSERVE THE ZERO · HOUR O,t,.TE CH,t,.NCES 

• I I 

I I .. I 

Area science museum. 

face of an exhibit 
a San Francisco Bay 
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10. 12. 1 THE TIME MACHINE CLOCK (Continued) 

In leaving this discussion on time, we leave one of the most fascinating subjects of 
nature. The material in this chapter represents only a brief introduction. We leave it to 
the imagination of the reader to explore the full depth of the time machine. 

10, 13 ELECTRONIC DICE 

In order to set up electronic dice, we first note the die faces: 

1 2 3 4 5 6 

Now, if we superimpose the dots of the above die faces, we form a single "face" of 
seven dots as follows: 

e-:1 
We can pick out any combination of dots from single face above to represent a die "face" 
display representing 1, 2, 3, 4, 5, or 6. In order to set the dots up as a counter, we will 
use the center dot for the 111 11 dot, the upper-right-lower-left diagonal pair for the 112 11 dots, 
the upper-left-lower-right diagonal for the "2A" dots, and the center side pair for the "2B" 
dots. They are represented as follows: 

"l" ll2AII "2B" 

Using the above 4 representations, we can see that the die displays occur as follows: 

1 = "1" 

2 = 11 21' 

3 = "2" and 11111 

4 = "2" and "2A" 

5 = 11211 and "2A" and 11 111 

6 = "2" and "2A" and "2B" 

We now set up a truth table as follows: 
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10. 13 ELECTRONIC DICE (Continued) 

DIE 112BII 112AII 11211 11111 

DISPLAY FACE FACE FACE FACE 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 1 0 

5 0 1 1 1 

6 1 1 1 0 

From the above truth table, we can s_ee that we need a gated 4-bit binary counter to count 
in the following sequence: 0001, 0010, 0011, 0110, 0111, 1110, 0001. . ..... There is no 
reset and the counting sequence must occur over and over again as shown. We can use a 
pulse and a 11halt11 command to start and stop the counting sequence at random. The logic 
diagram for a gated 11die11 counter is as follows: 

Now we must alter the above counter, change the physical positions of the flip-flops, and 
then add three more flip-flops to produce the 11 211 , 112A", and 112B" dot pairs. We will also 
add a "halt11 command for pulse control. The altered logic diagram is as follows: 
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10. 13 ELECTRONIC DICE (Continued) 

rtl 
·~~ -
"2A" t : 

r:l -•-

.. :;!.~ 
-
~ t. -

.;;. ..... 

-0 - ---~ 
- "2" . ;-

w "' 

~ -~ .... - "1" : 

,r;. 

I':'::\. 

~'Cl --4 ~ HALT I~ 

t 

w • ----ff "HALT COMMAND" 
START 

1!! 
~ > 
l;. 

~-.. , 
~ .~ > 
.;. 

",•t-
~ > 
w 
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10. 13 ELECTRO IC DICE (Continued) 

The counter will now read out directly like a die face when the pulse is stopped. Thus 
we can turn on the die counter by shorting together the two points indicated by arrows on 
the bottom of the "HALT1' flip-flop, and stop the counter by shorting together the two 
points indicated by arrows at the~ of the 11HALT" flip-flop . 

Now, if we were to build up two ''die" counters, we could set up an automatic gating 
command using 3 pulse generators . Pulse fH would control die #1 and pulse # 2 would 
control die # 2. Both pulse ·#1 and # 2 should be fast pulses of greater than 100 pulses per 
second. Pulse #3 would control the "HALT" flip-flop and should be as slow as possible 
(less than one pulse per second, preferably 1 pulse every 5 or 6 seconds) so the die face 
displays can be perceived during the time the pulse has stopped. Then the counter will 
automatically start up again and once more stop at random die face displays. For two 11die" 
counters , the pulse should be set up as follows: 

PULSE I PUT 
TO "DIE" COU TER 

# 2 

PULSE 
# 2 

(FAS1j 

• r.. 
PULSE 

#3 
(SLOW) 

• 

PULSE INPUT 
TO "DIE" COUNTER 

# 1 

• 

PULSE 
# 1 

(FAS1j 

The two completed "die" counters now form a pair of electronic dice which will auto­
matically "gate" count and stop at random displays. Happy gambling! 

10. 14 THE BINARY-TO-DECIMAL DECODER 

The binary-to-decimal decoder will decode a 4-bit binary number from a BCD (binary 
coded decimal counter) and display any of 10 decimal positions from O to 9. The decoding 
can be done with "AND" gates as follows: 
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10. 14 THE BINARY-TO-DECIMAL DECODER (Continued) 

DECIMAL READOUT ---••• •••••••••••••••••• 

DECODING LOGIC 

••• • •• 

After decoding, the decimal numbers are then read out in a row of 10 flip-flops. 

••• 

Decoding of other counters can also be accomplished in the same manner by use of "AND" 
gates. 

11. UNLIMITED HORIZONS 

Now that the workings of the computer have been explained, the imagination is now 
ready to talce over. One can now design with microelectronic integrated circuits using 
these same principles. The direction one can go from here is unlimited. Perhaps a large 
computer? Perhaps a special computer that will do something no other computers will do! 
The scope and horizons are unlimit d I 11 
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12. GLOSSARY 

ACCUMULATOR - the register (row of flip­
flops) that displays an answer such as in the 
case of the "adder" and "subtracter'' wiring 
projects. 

ADD CONTROL - the ''halt" command which 
is used to control (or stop} the addition pro­
cess in an "adder" configuration. 

ADDE D - the number which will be added to 
another number {in the process of addition). 

ADDEND REGISTER - the register (row of 
flip-flops) in which the number to be added is 
entered (in the "adder" computer project). 

ADDER - a wired configuration of flip-flops 
and/or logic gates which will perform the 
arithmetic process of addition. 

ADDER, FULL - the complete logic circuitry 
which generates both a ''sum" and a ''carry" 
output. 

ADDER, HALF - the logic circuitry which 
generates only a "sum" output and not a "carry" 
output; (also called a "SUM" gate). 

ADDER, LOGIC - a wired configuration of 
logic gates and/or flip-flops which will per­
form addition (in binary). 

ADDER, NON-GATED BINARY - a wired 
configuration of only flip-flops that will per­
form addition (i. e. , that will allow a binary 
number to be added in one register and the 
answer to be displayed in a second register). 

ADDER, SHIFT - a wired configuration of 
flip-flops and logic gates that consists of one 
full adder and three shift registers. Two 
shift registers shift the two numbers to be 
added through the full adder and the answer is 
shifted out in the third shift register. 

ADDITION IDENTITY - a logic expression 
which defines a "sum", a "carry", or both for 
two or more binary numbers. 

155 

"AND" GATE - an electronic circuit 
which forms a logic gate (represented by 
a semicircle) whose output is a 1111' only 
when all of its inputs are 11111 • The gate 
output is 11011 for all other combinations of 
inputs. 

"AND" LOGIC OPERATION - the logic 
operation denoted by the "dot" ( · ) ; the 
operation which answers the question: 
"Are all the facts 'TRUE'?" or "Are all 
inputs '1' ?11 

ANODE - the lead on a diode which re­
ceives positive (+) voltage, as opposed to 
the other lead, the cathode, which re­
ceiv es negative voltage. 

ANTE MERIDIEM - before noon (abbre­
viated A. M.); denotes a time period of 
half a day starting from zero hour (mid­
night) up to, but not including, noon hour 
(i . e. , the time period during the morning 
hours) . 

ASSOCIATIVE - refers to the grouping of 
logic facts or expressions (i.e. , the use 
of "grouping" parentheses, brackets, or 
braces . 

ASTABLE MULTIVIBRATOR - a pulse 
generator. 

AUGEND - the number to which another 
number will be added. 

BAR, OVERHEAD - (-) used to group 
together specific parts of "FA~E" logic 
expressions; used to denote a "FA~E" 
logic (i. e . , to negate) logic fact. 

BASE - the lead on a transistor which is 
used to control the flow of voltage and cur­
rent through the transistor (see also 
COLLECTOR and EMITTER). 

BCD - the abbreviation for "binary coded 
decimal". 

wigfi
Stolen 2 Line Transparent

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

156 

12. GLOSSARY (Continued) 

BINARY ADDITION - obtaining the binary 
sum of two binary numbers. 

BINARY CODED DECIMAL - any decimal 
number (or decimal readout) that is con­
trolled by a logic-gated binary counter 
which will count from 1 through 9 and then 
reset itself. 

BINARY CODED DECIMAL (BCD) COUNTER­
a binary counter with logic gating which 
will count up to binary nine (1001) and then 
reset itself to 0000; the counter used to 
control decimal system digital displays. 

BINARY COMPLEMENT - that binary mun­
ber which has the "l' s" and "O's" of its 
digits interchanged from those of the original 
binary number. The sum of a binary number 
and its complement is a third binary number 
whose digits are all "l's". 

BINARY DIVISION - the process of dividing a 
first binary number by a second binary num­
ber and obtaining a binary quotient. 

BINARY FRACTIONAL - all binary digits to 
the right of the binary point. Similar to the 
common "decimal" digits to the right of the 
decimal point, except that the digits are all 
in binary. 

BINARY INPUT - a binary "1" or 11011 which 
is fed to a logic gate input or flip-flop input 
in order to perform a logic function or flip­
flop triggering operation; any pin on a flip­
flop or logic gate which can receive a binary 
output signal. 

BINARY MULTIPLICATION - the process of 
multiplying two binary numbers together and 
obtaining a binary product. 

BINARY NUMBER - a digit which represents 
a power of 2 and can only be a 11111 or a 11011

; a 
number of two or more digits which represent 
powers of 2 and each digit is a 11111 or a "0". 

BINARY OUTPUT - any pin of a flip-flop or 
logic gate that generates a binary 11111 or 11011 

voltage s ignal which results from one or more 
input signals. Any pin on a pulse generator 
which generates a pulse voltage signal. 

BINARY POINT (·) - similar to a "decimal" 
point, except that it is used to denote a 
binary fractional. 

BINARY SUBTRACTION - the process of 
subtracting two binary numbers to obtain a 
binary difference. 

BINARY SYSTEM - the number system to 
the base 2. Consists only of "l's" and "O's''. 
Starting to the right, we have the "1 's" 
column, then the 2's column just left of it, 
then the 4's column, the S' s column (each 
column to the left represents a number 
double the value of that to the right of it). 
Binary 1111

' means the column number is 
used; binary "0" means the column number 
is not used. 

BISTABLE MULTIVIBRATOR - a flip-flop. 

BIT - this is the shortened form for the 
words BINARY DIGIT. A "bit" is a binary 
digit. 

BOOLEAN APPROACH - to impose the con­
dition that a ll logic statements, reasons, 
conclusions, facts, etc. , are either "TRUE" 
or "FALSE11 • 

BORROW - the binary 1111' which is removed 
from the adjacent column to the left by the 
subtraction of binary 11111 from binary 1'0", 
leaving 11111 in the column which was subtract­
ed. 

BORROW FEEDBACK - a "borrow", or 
binary 11111 which is removed from a column 
other than the adjacent column to the left; 
the "borrow" of the last binary number at 
the extreme left of a register which is fed 
back into the first binary number (extreme 
r ight) of the same register. 

BRACES { } - symbols which denote logic 
grouping along with parentheses and brackets. 

BRACKETS [ ] - symbols which denote 
logic grouping along with parentheses and 
braces. 
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12. GLOSSARY (Continued) 

"BRING- DOWN" - those numbers which are 
in the dividend (in division) or in the radicand 
(under the square root radical) which are 
tacked onto the remainder in order for a 
further division process to be performed; 
the process of tacking on the numbers men­
tioned above. 

CANCEL - to remove a binary 11111 from a 
flip-flop; to turn the flip-flop readout light 
off by shorting or touching together pins A 
and B. The process of removing a binary 
number from a register. 

CAPACITOR - a two-lead electronic device 
which is used to store up electronic voltage 
charge. 

CARRY - the binary 11111 generated in the 
next column to the left by the addition of two 
binary 11 1 1 s", leaving 110 11 in the column 
which was added. 

CARRY FEEDBACK - a "carry", or binary 
"1" which is generated in a column other 
than the next column to the left; the "carry'' 
of the last binary number at the extreme left 
of a register which is fed back into the first 
binary number (extreme right) of the same 
register. 

CA THODE - the lead on a diode which re­
ceives negative (-) voltage, as opposed to the 
other lead, the anode, which receives positive 
voltage. 

CENTURY - a time interval of 100 years . 

CENTURY, QUAD - a time interval of 400 
years. 

CENTURY YEAR - a year which ends in "00" 
(is divisible by 100) such as 1700, 1800, 1900, 
2000, and 2100. 

CLEAR - to remove a binary "1" from a flip­
flop; same as "cancel"; to remove a binary 
number from a register. 

COLLECTOR - the lead on a transistor which 
receives voltage and current input (see also 
BASE and EMITTER) . 
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COMMAND GENERATOR - a binary counter 
which is used in conjunction with "AND" 
gates in order to generate a repetitive series 
of command pulses . An "n"-bit counter can 
generate up to 2n repetitive command pulses . 

COMPARATOR - will compare two numbers 
"A" and "B" and will determine whether A is 
greater than, greater than or equal to, equal 
to, less than or equal to, less than, or un­
equal to B depending on the type ot comparator. 

COMPARATOR, BINARY - will perform the 
same function as a comparator, except that 
the numbers being compared are in binary. 
A logic configuration which will sense any 
number of comparison inputs and provide a 
single binary comparison output. 

COMPARATOR, "EQUAL TO" - will com­
pare two binary numbers "A" and "B". If 
A = B, then the comparator output will be a 
111". The comparator output will be "0" in 
all other cases . 

COM PARA TOR, "GREATER THAN" - will 
compare two binary numbers "A" and "B" . 
If A is greater than B, then the comparator 
output will be a "1''. The comparator output 
will be 110 11 in all other cases . 

COMPARATOR, "GREATER THAN OR 
EQUAL TO" - will compare two binary 
numbers "A" and "B". If A is greater than 
or equal to B, then the ~comparator output 
will be a "1 11 • The comparator output will 
be 11 011 in all other cases. 

COMPARATOR, ''LESS THAN" - will com­
pare two binary nwnbers "A" and "B". If 
A is less than B, then the comparator output 
will be a 11111 • The comparator output will 
be "0" in all other cases. 

COMPARATOR, "LESS THAN OR EQUAL 
TO" - will compare two binary numbers "A" 
and "B". If A is less than or equal to B, 
then the comparator output will be a 11111 • 

The comparator output will be "O" in all 
other cases . 
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COMPARATOR, 11 UNEQUAL T011 - will com­
pare two binary numbers 11A" and 11B11 • If A 
is unequal to B, the comparator output will 
be a "l '' · The comparator output will be "0" 
in all other cases. 

COMPARATOR REAOOUT - the output of 
either a gate or a flip-flop (the compa.rator 
output) in a comparator computer project 
which indicates that a comparison is valid 
if it is a "l" and invalid if it is a "0". 

COMPARISON DIAGRAM - a pictorial dia­
gram square which is divided into separate 
cells. Each cell represents a comparison 
possibility for comparison. The total 
number of cells represents the total number 
of comparison possibilities. The number of 
cells that will appear for comparing num­
bers of "n" digits is 22n. 

COMPLEMENT I BINARY - that binary num­
ber which has the "l 's 11 and "O's'' of its 
digits interchanged from those of the orig­
inal binary number. The sum of a binary 
number and its complement is a third 
binary number whose digits are all "l's". 

COMPLEMENTARY TRANSFORMATION 
REGISTER - a register (row of flip-flops) 
which will transform, by a computer pro­
cess, any number (entered into the register} 
into its complement and display the comple­
ment in the same register. 

CONCLUSION - a specific logical decision 
or evaluation reasoned out from a set of 
logical facts. 

CONNECTIONS, POWER - those connec­
tions on electronic computer units which 
supply the operating voltage needed for each 
unit to function. 

COUNTER - a system of wired flip-flops 
whose binary digits will continuously in­
crease by 11111 in numerical order, or de­
crease by "l" in reverse order with each 
pulse command. 

COUNTER, BINARY CODED DECIMAL 
(BCD) - a binary counter with logic gat­
ing which will count up to binary "nine" 
(1001} and then reset itself to 0000. 
Consists of four binary digits; the counter 
used to control decimal system digital 
displays. 

COUNTER, 11DOWN" - a counter that 
starts from any specmed number and 
decreases its value by 1 with each pulse 
signal input. In other words, it "counts 
backwards". 

COUNTER, GATED "UP-DOWN" - a 
single-register binary counter that can be 
controlled by logic gating so as to count 
11UP11 or "DOWN" at the proper command. 

COUNTER, "UP-DOWN" - a binary 
counter wired with extra logic gates so 
that the free-running counter will count 
alternately "UP" and then switch auto­
matically to "DOWN" after resetting 
from the "UP" count. It will switch 
automatically back to "UP" after the 
"borrow" overflow is generated. 

CROSS-PRODUCT - those individual pro­
ducts which are obtained by multi plying 
the multiplicand by each separate digit in 
the multiplier. The sum of these cross­
products yields the total multiplied 
product. 

CURRENT-LIMITED VOLTAGE - voltage 
present when a resistor is placed in 
series with the power source (the value of 
1, 000 ohms should be used for most cur­
rent limiting described in this text). 

DAY - a time interval of exactly 24 hours. 

DEBUG - to eliminate problems that may 
occur in the wiring or operation of com­
puter circuits. 

DECADE - a time interval of ten years. 
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DECIMAL SYSTEM - the most commonly 
used number system throughout the world; 
our ordinary numbering system which 
employs the use of the digits 1, 2, 3 , 4, 5, 
6, 7, 8, 9, and 0. 

DECODER, BINARY-TO-DECIMAL - a 
configuration of logic gating which will con­
vert any binary number to a decimal number. 
Usually used with a binary coded decimal 
counter. 

DECOUPLE - to block out any electronic 
noise or interference which is generated by 
nearby circuits, the power source (power 
supply), or by external noise sources. 

DECOUPLING CAPACITORS - capacitors 
which are connected directly across the 
power pins of each electronic circuit (flip­
flop, gate, or pulse generator) in order to 
block out electronic noise or interference. 

DEMORGAN'S THEOREMS - the two basic 
theorems which define the relationship be­
tween "AND" and "OR" logic operations. 

DENOMINATOR - the bottom part of a 
fraction. 

DIAGRAMS, LOGIC - drawings which illus­
trate how flip-flops and logic gates must be 
wired up to perform specific computer 
functions; the use of symbols to represent 
flip-flop, logic gate, and pulse generator 
electronic circuits without drawing out the 
full electrical schematic each time. Dots 
on the symbols are used to represent pin 
connections. Lines which connect these dots 
from one symbol to another represent all 
wire connections (power connections are not 
shown). 

DICE, ELECTRONIC - a gated logic circuit 
which will produce random die displays on 
an electronic die face. Two of these circuits 
are used to comprise a pair of electronic 
dice. 

DIFFERENCE - the answer which results 
from the subtraction of two numbers; the 
binary digit which represents the subtraction 
of one binary digit from another binary digit, 
ignoring the ''borrowit. 
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DIGIT - a single number. 

DIGIT, BINARY - a single binary number 
(a 11111 or a 11011). 

DIGIT I LEAST SIGNIFICANT - the digit 
at the extreme right of any number. 

DIGIT, MOST SIGNIFICANT - the digit at 
the extreme left of any number. 

DIGIT SENSE - the use of an "OR" logic 
gate to determine whether or not a number 
is present in a register. 

DIGIT SENSE LOGIC - a gated logic cir­
cuit (usually a multi-input "OR" gate) 
which will determine if any numbers (or 
digits) are present in a register. 

DIGITAL - the representation of a number 
in discrete terms of "on" or "off''. The 
flip-flop register is a digital representa­
tion of a binary number. This is contrast­
ed with the term ANALOG which is a 
representation of a number in terms of 
variable (not "on" or "off") voltage out­
puts. 

DIODE - a two-lead electronic device 
which is used to block the flow of elec­
tronic voltage and current in one 
direction (see also ANODE and CATHODE~ 

DIODE WIRE - a wire with a diode spliced 
in the middle. The main use for the 
diode wire is to stop (ot halt) the pulse 
from the pulse generator. 

DIRECT OUTPUT DISPLAY - the use of 
a flip-flop to read out the output of a logic 
gate by wiring that output of the logic gate 
directly into pin E of the flip-flop. 

DIRECTOR - an output pulse or signal 
which is capable of driving one or more 
inputs (or input followers). 

DISPLAY, DIRECT OUTPUT - the use of 
a flip-flop to read out the output of a logic 
gate by wiring that output of the logic gate 
directly into pin E of the flip-flop. 
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DISTRIBUTE - to logically "multiply" a logic 
expression; to perform an indicated logic 
operation on a group of logic facts, one at a 
time, when such facts are grouped by paren­
theses and the logic operator is outside the 
parentheses. The parentheses are then 
remov d after the "distribute'' operation is 
performed. 

DISTRIBUTIVE LAW - any definition that 
sets a rule for logic distribution operations. 

DIVIDE CONTROL - a wired configuration of 
flip-flops with or without logic gates which 
generates pulse signals to perform the 
division process (in the "divider" computer 
project). 

DMDEND - the number to be divided (in the 
arithmetical process of division). 

DIVIDEND REGISTER - the register (row of 
flip-flops) in which is entered the number to 
be divided (in the 11divider11 computer project). 

DIVIDER, LOGIC - a configuration of gated 
logic circuits and registers which will divide 
one number by another. 

DIVISOR - the number by which a second 
number is divided (in the arithmetical pro­
cess of division). 

DIVISOR REGISTER - the register (row of 
flip-flops) in which is entered the number by 
which a second number is being divided (in 
the "divider" computer project). 

DOUBLING, BINARY - the process of adding 
an extra 11 011 to the left of a given binary 
number. Adding on a 11 011 to the left of any 
binary number will always result in doubling 
that number. 

"DOWN" COUNTER - a counter that starts 
from any specified number and decreases its 
value by 1 with each pulse signal input. In 
other words, it "counts backwards". 

DOWN-SWING, VOLTAGE - the change of the 
output of a pulse generator, flip-flop, or 
logic gate from a specific voltage, to zero 
volts; the voltage change which will cause 
flip-flop triggering. 

EMITTER - the lead on a transistor where 
the controlled voltage and current flow out 
(see also COLLECTOR and BASE). 

END-AROUND - the transfer of a pulse 
command from the last flip-flop (extreme 
left) in a register to the first flip-flop 
(extreme right) . The signal generated by 
the last flip-flop, which would normally 
control another flip-flop to the. left (beyond 
the last one, if it were present), instead is 
used to control the first flip-flop. 

ENTER - to place a binary 11 111 in a flip-
flop (i. e. , turn the flip-flop light on) by 
touching pins D and E together. To place 
a binary number in a flip-flop register by 
changing the proper flip-flops to 1111 s". 

"EOR" GATE - an "exclusive or'' gate. An 
electronic circuit which forms a logic gate 
whose output is a 11111 if, and only if, ~ of 
its binary inputs is a 11111 • The gate output 
is 11011 for all other combinations of inputs. 

"EOR" LOGIC OPERATION - exclusive "or" 
logic operation. The logic operation de­
noted by the "triangle" (Y); the operation 
which answers the question: "Is there only 
one 'TRUE' fact?" or "Is only one input a 
'1 r ?" 

EQUALITY, LOGIC - defines two or more 
logic expressions, equations, or facts to be 
equivalent or identical. This condition is 
denoted by the "equal'' sign (=). 

EXCLUSIVE OR - (see "EOR".) 

FACT, LOGIC - a statement (which may be 
true or false) which is used to reason out a 
conclusion. 

FACTORED EXPRESSION - a logic ex­
pression whose individual terms are not 
distributed. 

FALL TIME - the time required for a volt­
age down- swing to occur. The time which 
elapses during the change from some 
specific voltage, to zero volts. 
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FALSE - the condition of not being true; the 
condition of a flip-flop or logic gate being in 
the 11 011 or "off11 state (flip-flop readout 
light off); an input that is a 11011 • The side of 
the flip-flop opposite the readout light (also 
all flip-flop outputs and inputs, pins D, E, 
F, opposite the readout light). 

"FALSE" DffiECTOR OUTPUT - the output 
pin (pin D) on the "FALSE" side of the flip­
flop; also known as the "FALSE" output of 
the flip-flop. 

"FALSE" FOLLOWER INPUT - the input pin 
(pin F) on the 11 FALSE11 side of the flip-flop 
which causes steering depending upon whether 
or not an input voltage is present. 

"FALSE" OUTPUT - the output pin (pin D) on 
the "FALSE" side of the flip-flop; also known 
as the "FALSE'' director output of the flip­
flop. 

"FALSE" SIDE - the side of the flip-flop 
opposite the readout light. 

FEED - to enter an input. 

FEEDBACK - a pulse command which is 
generated by one position in a register (either 
from a flip-flop or a gate) and is used to 
trigger a random position in that same regis­
ter (i.e., a non-adjacent position). Usually 
referred to as a pulse command which is 
generated by the last position on the left and 
used to trigger the first position on the right. 

FIJP-FLOP - an electronic computer circuit 
(also called a BISTABLE MULTIVIBRATOR) 
that is capable of displaying a binary number 
as either a 11111 or a 11011 (in this case, with a 
readout light that is on or off) and will change 
state with the proper pulse command. 

FLOW CHART - a block pictorial representa­
tion (each block containing a brief description) 
of individual steps which take place in a more 
complicated computer operation. 

FLOW DIAGRAM - see FI.IJW CHART. 

161 

FLUSH LEFT - the condition of two num­
bers of unequal digit length written, one 
below the other, so that first digits at 
the extreme left line up. The other digits 
to the right are then written successively 
one below the other until there are no more 
digits. 

FLUSH RIGHT - the condition of two num­
bers of unequal digit length written, one 
below the other, so that the first digits at 
the extreme right line up. The other 
digits to the left are then written success­
ively one below the other until there are 
no more digits. 

FOLLOW'tR INPUTS - the input pins on 
the flip-flop (pins C and F) which will or 
will not cause a change of state to take 
place, depending on whether or not an in­
put voltage is present, with the next pulse 
command. See STEERING INPUTS. 

FRACTION - two numbers, Written one 
over the other, separated by a horizontal 
line to show that a division can be perform­
ed; the ratio between two numbers. The 
top number is called the NUMERATOR and 
the bottom number is called the DENOM­
INATOR. 

FRACTION, BINARY - a fraction whose 
numerator and denominator are expressed 
in the binary (base 2) number system. 

FRACTION, DECIMAL - a fraction whose 
numerator and denominator are expressed 
in the decimal (base 10) number system. 

FRACTIONAL - that portion of a number 
which is written to the right of a "point" 
(i. e. , "decimal point" or "binary point") 
which represents that part of the number 
less than unity (1). This part of the number 
is represented by successive negative 
powers of the base system being used. 

FRACTIONAL, BINARY - that portion of a 
binary number which is written to the right 
of the binary point to represent that part of 
the number less than unity (1). This part of 
the number is represented by successive 
negative powers of 2 (i.e. , 1/2, 1/4, 1/8, 
1/16, 1/32, 1/64, etc.). 

wigfi
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FRACTIONAL, DECIMAL - that portion of 
a decimal number which is written to the 
right of the decimal point to represent that 
part of the number less than unity (1). This 
part of the number is represented by suc­
cessive negative powers of 10 (i.e., 1/10, 
1/100, 1/1000, 1/10000, etc . ). 

FRACTIONAL, INFINITE - a fractional ob­
tained by repeated division of two finite 
numbers . Tbe repeated division goes on 
indefinitely and the digits in the fractional 
repeat themselves in a given sequence. 

FRACTIONAL, IRRATIONAL - a fractional 
obtained, for instance, when extractin-g the 
root of a number which is not a perfect 
power, or by calculating constants such as 
"77' " and "e"; the digits are calculated in 
endless sequence, but do not demonstrate 
any pattern of repetition. 

FULL ADDER - the complete logic circuitry 
which generates both a ''sum" and a "carry" 
output. 

FULL SUBTRACTER - the complete logic 
circuitry which generates both a "difference" 
and a "borrow" output. 

FUNCTION, LOGIC - an expression which 
contains one or more logic operators indicat­
ing logic operation(s} to be performed; a 
specific logic operation such as "AND" or 
IIOR". 

GA TE 1 "AND" - an electronic circuit which 
forms a logic gate (represented by a semi­
circle) whose output is a 11111 only when all of 
its inputs are 11111 • The gate output is 11011 for 
all other combinations of inputs. 

GATE, "EOR" - an "exclusive or11 gate. An 
electronic circuit which forms a logic gate 
whose output is a 11111 if, and only if, ~ of 
its binary inputs is a 11111• The gate output is 
"01' for all other combinations of inputs. 

GATE , INVERTER - an electronic circuit 
which forms a logic gate with only a single 
input and whose output is exactly opposite of 
its input. 

GATE, LOGIC - an electronic circuit 
which performs a logic operation (i. e. , 
"AND", "OR", etc.). 

GA TE 1 "NAND" - an electronic circuit 
which forms a logic gate whose output is 
a "0" only when all of its inputs are 11111 • 

The gate output is 1'1" for all other com­
binations of inputs. An inverted 11AND" 
gate. Represents "NOT AND" or a nega­
tive "AND" gate logic function. 

GA TE, "NOR" - an electronic circuit 
which forms a logic gate whose output is 
a 11111 only when all of its inputs are "0" . 
The gate output is 11011 for all other com­
binations of inputs . An inverted "OR'' 
gate. Represents "NOT OR'1 or a negative 
"OR" gate logic function. 

GA TE, "OR" - an electronic circuit which 
forms a logic gate (represented by a tri­
angle) whose output is "0" only when all 
of its inputs are 11011 • The gate output is 
"1" for all other combinations of inputs. 

GA TE, "SUM" - an electronic circuit 
which forms a logic gate whose output is a 
11111 only when the parity of all 11111 inputs, 
regardless of how many, is odd. The gate 
output is 11011 if the parity of all 11111 inputs 
is even. 

GATE NOMENCLATURE - names for logic 
gates determined by the following general 
format: (1) Identify the gate logic function. 
(2) Identify the number of identical logic 
gates on a printed circuit card. (3) Identify 
the number of inputs per gate. 

GENERATOR, COMMAND - a binary count­
er which is used in conjunction with "AND11 

gates in order to generate a repetitive 
series of command pulses. An "n"-bit 
counter can generate up to 2n repetitive 
command pulses. 

GENERA TOR, PULSE - an electronic cir­
cuit (also called an ASTABLE MULTIVIBRA­
TOR) that generates a repetitive square 
wave voltage output that swings from 111" 
(voltage present) to 1101' (no voltage); the 
command device that makes the flip-flops 
work automatically. 
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GROUP, TO - to use parentheses, brackets, 
braces, or an extension of the "overhead 
bar" to set off a part of a logic function from 
the rest of the expression, or to clarify (by 
isolating part(s) of a logic function) where 
ambiguities can exist. 

HALF ADDER - the logic circuitry which 
generates only a "sum'' output and not a 
"carry" output; (also called a "SUM" gate). 

HALF SUBTRACTER - the logic circuitry 
which generates only a "difference" output; 
and not a "borrow" output; (also called a 
"SUM" gate} the half-adder and half­
subtracter are identical as are the "sum" 
and "difference" outputs. 

HALT - to stop the command pulse generator 
at the proper precise instant (accomplished 
with the use of a diode wire and a control 
flip-flop). 

HALT COMMAND - the command signal 
which turns off the pulse generator (stops 
the pulse). This command signal triggers 
a control flip-flop (see ''HALT11) which in 
turn changes state and grounds out the com­
mand pulse signal through a diode wire. 

HALT CONTROL - the flip-flop used with 
the diode wire to control the command pulse 
generator signal. 

HANG UP - the inability of a flip-flop to be 
triggered from a pulse command. Examples 
are the use of an "AND" gate for triggering 
when at least one input to that "AND" gate is 
always "0", or the use of an "OR" gate for 
triggering when at least one input to that 
''OR" gate is always 11111 • 

IDENTITIES, FUNDAMENTAL - logic equal­
ities of accepted fact (i. e . , need not be 
proven) which define basic relationships 
between two or more logic quantities. 

IDENTITY I LOGIC - an expression of equal­
ity which denotes that for all possibilities of 
11111 and "0", the "TRUTH" tables are the 
same for the part of the expression to the 
left of the equality as for the part of the ex­
pression to the right of the equality. 
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INFINITE FRACTIONAL - a fractional 
obtained by repeated division of two finite 
numbers . The repeated division goes on 
indefinitely and the digits in the fractional 
repeat themselves in a given sequence. 

INPUT, BINARY - a binary 11111 or "0" 
which is fed to a logic gate input or flip­
flop input in order to perform a logic 
function or flip-flop triggering operation; 
any pin on a flip-flop or logic gate which 
can receive a binary output signal. 

INTRINSIC PROBLEM - the inability of 
a computer circuit or wiring project to 
work properly even though there is ap­
parently no mistake in the circuit 
construction or in the wiring. 

INVERTER GATE - an electronic circuit 
which forms a logic gate with only a 
single input and whose output is exactly 
opposite of its input. 

mRA TIONAL FRACTIONAL - a fractional 
obtained, for instance, when extracting 
the root of a number which is not a perfect 
power, or by calculating constants such 
as ''7r"' and "e"; the digits are calculated 
in endless sequence, but do not demon­
strate any pattern of repetition. 

"L" LINE - an "L"-shaped line (reversed 
"L") with a long bottom which is drawn to 
the left of each square root remainder 
and is used to separate each new square 
root divisor from its associated remainder. 

LABEU) - identifying statements or num­
bers which are used to describe flip-flop 
or logic gate relative positions; also, 
identifying statements or numbers which 
describe register, command, process, 
control, or project functions. These 
statements and/or numbers may be labeled 
on each project (after completion) for 
clarification. 

LAW, LOGIC - a relation which is proved 
or assumed to bold between other logic 
expressions (the relationship is expressed 
by a logic equality). 
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LEAKY - the condition of a diode or 
transistor that does not completely block 
the flow of voltage and current in the direc­
tion where the flow should be blocked. 

LEAP YEAR - a year which has 366 days 
instead of 365 days . Occurs in all non­
century years divisible by 4, and in all 
century years divisible by 400. 

WGIC - the science of reasoning (i. e. , 
making use of known facts to reason out a 
conclusion). 

LOGIC DIAGRAMS - drawings which illus­
trate how flip-flops and logic gates must be 
wired up to perform specific computer 
functions; the use of symbols to represent 
flip-flop, logic gate, and pulse generator 
electronic circuits without drawing out the 
full electrical schematic each time. Dots 
on the symbols are used to represent pin 
connections. Lines which connect these dots 
from one symbol to another represent all 
wire connections (power connections are not 
shown). 

LOGIC GA TE - an electronic circuit which 
performs a logic operation (i.e. , 11AND", 
"OR", etc.). 

LOGIC GATING - using logic gates to per­
form logic operations on flip-flop outputs. 

LOGIC NOTATION - the use of symbols such 
as the "dot" (·). "wedge'' (v), "plus 11 (+), 
"triangle11 (v), 11eq_ual11 (=), and the overhead 
"bar" (-) in conjunction with appropriate 
capital letters (to represent logic facts) to 
denote logic operation(s) . 

LOGIC OPERA TOR - a symbol which indi­
cates that a logic function (such as "AND11 

or "OR") is to be performed. Examples of 
logic operators are: The 11wedge11 (v), the 
"dot" ( · ) , the 'plus11 (+), the "triangle" (v) 
and the overhead "bar11 (-). 

MEMORY - a wired configuration of flip­
flops which stores binary information. The 
accumulator, which displays and stores an 
answer, can be considered a memory. 

MILLENIUM - a time interval of 1000 years. 

MINUEND - that number from which 
another number is to be subtracted. 

MULTIPLICAND - that number which is 
to be multiplied by a second number. 

MULTIPLICAND REGISTER - the register 
containing the number which is to be 
multiplied by a second number (in the 
"multiplier" computer projects). 

MULTIPIJCATION CONTROL- a wired 
configuration of flip-flops with or without 
logic gates which generates pulse signals 
to perform the multiplication process 
(see MULTIPIJER CONTROL). 

MULTIPLIER - that number by which 
another number is to be mul~plied. 

MULTIPIJER, CUMULATIVE-ADDITION -
a wired computer project which performs 
multiplication by successive steps of ad­
dition rather than by full logic gating. 

MULTIPLIER, FULL LOGIC - a wired 
computer project which performs multi­
plication only with the use of logic gates. 
There are no intermediate steps of 
addition. 

MULTIPLIER CO TROL - that register 
(in the cumulative-addition multiplier) 
which generates pulse signals for the 
intermediate steps of addition and stops 
the multiplication process when all the 
addition steps have been completed. 

MULTIPLIER REGISTER - the register 
containing the number by which another 
number is to be multiplied (in the "multi­
plier" computer projects) . 

MULTIPIJER SENSE - logic gates (in the 
cum ulative--addi tion multiplier) which 
determine when the last digit to the right 
in the multiplier register is a 111" and, if 
so, causes an intermediate step of ad­
dition to take place. 

"NAND" GATE - an electronic circuit 
which forms a logic gate whose output is a 
"0" only when all of its inputs are "1". 
The gate output is 11111 for all other 
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11NAND" GATE (continued) 
combinations of inputs. AA inverted "AND11 

gate. Represents "NOT AND 11 or a negative 
"AND" gate logic function. 

''NAND" LOGIC OPERA TJON - the logic op­
eration which is the negative of "AND'' logic 
operation and is denoted by a "dot" and an 
overhead "bar" across the entire expression; 
the operation which answers the question: 
"Is at least one fact 'FALSE'?'' or 111s at 
least one input 'O' ? 11 

NEGATION - employs the use of an overhead 
"bar" to denote "not A" when placed over 
logic fact A. 

NEGATION I DOUBLE - the process of in­
verting twice, or inverting the negative of a 
logic fact A (i.e. , "not not A") to revert it 
to the positive (i.e. , the original fact "A"). 

NOISE, ELECTRONIC - abrupt power volt­
age fluctuations or line voltage fluctuations 
which cause unwanted flip-flop triggering. 
Noise occurs during the entering and cancel­
ling of binary numbers . When this happens, 
other flip-flops may change state for no 
observed apparent reason. 

"NOR" GATE - an electronic circuit which 
forms a logic gate whose output is a "l" 
only when all of its inputs are 110 11 • The 
gate output is "0" for all other combinations 
of inputs. An inverted "OR" gate. Repre­
sents ' OT OR" or a negative "OR" gate 
logic function. 

"NOR" LOGIC OPERATION - the logic oper­
ation which is the negative of "OR" logic 
operation and is denoted by a "wedge" and an 
overhead "bar" across the entire expression; 
the operation which answers the question: 
"Are all the facts 'FAL5E' ? 11 or "Are all 
inputs 'O' ?" 

NORMAL YEAR - a time interval of exactly 
365 days. 

NOTATION I LOGIC - the use of symbols 
such as the "dot" (·), "wedge" (v), ''plus" 
(+), "triangle11 (v), 11equal11 (=), and the over­
head "bar" (-) in conjunction with appropri­
ate capital letters (to represent logic facts) 
to denote logic operation(s). 
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NU MERA TOR - the top part of a fraction. 

"OFF" - the condition of a flip-flop or 
logic gate whose output is a "0". 

110FF" STATE - the condition of a flip­
flop light being off; a flip-flop in the 
''FALSE" or 110 11 state; the condition of a 
logic gate whose output is 11011 • 

''ON" - the condition of a flip-flop or logic 
gate whose output is a "1". 

110N1' STATE - the condition of a flip-flop 
light being on; a flip-flop in the "TRUE" 
or 11 111 state; the condition of a logic gate 
whose output is ''1". 

OPEN - no electrical connection between 
two specified electrical points {i.e. , 
pins). 

OPERA TOR, LOGIC - a symbol which 
indicates that a logic function {such as 
"AND" or "OR") is to be performed. 
Examples of logic operators are: the 
"wedge" {v) , the "dot" (· ), the "plus" (+), 
the "triangle" (V), and the overhead 11 bar11 

,-). 
''OR" GA TE - an electronic circuit which 
forms a logic ga~e {represented by a tri­
angle) whose output is "O" only when all 
of its inputs are 11011 • The gate output is 
"1" for all other combinations of inputs. 

110R" LOGIC OPERATION - the logic oper­
ation denoted by the "wedge11 (v); the 
operation which answers the question: 
"Is at least one fact 'TRUE'?" or "Is at 
least one input 11' ?" 

OUTPUT I BINARY - any pin of a flip-flop 
or logic gate that generates a binary 11111 

or 11011 voltage signal which results from 
one or more input signals. Any pin on a 
pulse generator which generates a pulse 
voltage signal. 

OVERFLOW - the "carry" or "borrow" 
output generated by the last flip-flop at the 
extreme left in a register. 

http://www.SteamPoweredRadio.Com


www.SteamPoweredRadio.Com

166 

12. GLOSSARY (Continued) 

PARENTHESES ( } - symbols which denote 
logic grouping along with brackets and 
braces. 

PARITY - the condition of a num her being 
even or odd (i. e. , 11even11 parity or 11odd" 
parity). 

PIN - a terminology used to describe a cir­
cuit connection point. Since the printed 
circuit board configurations for all circuits 
described with.in are designed with inserted 
pin (or "terminal") connections at the 
proper points, the term 11 PIN11 has been used 
to describe these points . 

PINS, POWER - the two pins where the 
positive and negative power connections must 
be made. These power connections must be 
made on each ci.rcuit in order for it to oper­
ate . 

POINT - a period (.) used to split a number 
into two parts: the left part represents that 
portion of the number which is greater than 
unity (1) and the right part represents that 
portion of the number which is less than 
unity (1). The point separates the fractional 
(right) from the whole number portion (left). 

POINT, BINARY - a period (. ) used to split 
a binary number into two parts: the left part 
represents that portion of the number which 
is greater than unity (1) and the right part 
represents that portion which is less than 
unity (1). The binary point separates the 
binary fractional (right) from the binary 
whole number portion (left). 

POINT I DECIMAL - a period(.} used to 
split a decimal number into two parts: the 
left part represents that portion of the 
number which is greater than unity (1) and 
the right part represents that portion which 
is less than unity (1). The decimal point 
separates the decimal fractional (right) from 
the decimal whole number portion (left). 

POLARITY - the condition of a voltage pin, 
battery terminal, or power supply terminal 
being positive (11+11) or negative (1'-''). 
Battery, power supply, and voltage pin pol­
arities must be properly wired for all units 
in order for them to operate properly. 

POST MERIDIEM - after noon (abbre­
viated P . M. ); denotes a time period of 
half a day starting from noon hour up to, 
but not including, zero hour (midnight) of 
the next day (i. e. , the time period during 
the afternoon and evening hours). 

POWER SOURCE - a battery or a power 
supply which supplies voltage to all elec­
tronic units in order for them to operate. 

PROBLEM, INTRINSIC - the inability of 
a computer circuit or wiring project to 
work properly even though there is 
apparently no mistake in the circuit 
construction or in the wiring. 

PRODUCT - the result obtained by multi­
plying two or more numbers together. 

PRODUCT REGISTER - the register (row 
of flip-flops) which indicates the answer 
after a multiplication is performed (in 
the "multiplier" computer projects). 

PROJECT, BASIC - a very simple com­
puter wiring project which usually 
consists of a few flip-flops, a pulse gen­
erator, but contains no logic gates. 

PROJECT, COMPUTER - a wired con­
figuration of flip-flops and logic gates 
which performs computer operations. 

PROJECT, NON-GATED - a computer 
wiring project which contains no logic 
gates. 

PULSE - a square wave voltage output 
that is either at ''0" or at 1'1 ". The pulse 
signal occurs during the "down-swing" or 
"fall" from "1" to "0"; may be generated 
by a pulse generator, flip-flop, or logic 
gate. 

PULSE GENERATOR - an electronic cir­
cuit (also called an ASTABLE MULTI­
VIBRA TOR) that generates a repetitive 
square wave voltage output that swings 
from "1" (voltage present) to "O" (no 
voltage); the command device that makes 
the flip-flops work automatically. 

wigfi
Stolen 2 Line Transparent
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QUAD - a time interval of 400 years . Short 
for QUAD CENTURY. 

QUAD CENTURY - a time interval of 400 
years. 

QUOTIENT - the answ r obtained after divid­
ing one number by another. 

QUOTIENT REGISTER - the register (row of 
flip-flops) which indicates the answer after 
the computer division process is completed 
(in the "divider" computer project) . 

RADICAL cL} - a mathematical notation 
which indicates that a root (i. e. , square root) 
must be extracted from a number. 

RADICAND - the number contained inside a 
root radical; the number from which a 
(square) root must be extracted. 

RADICAND REGISTER - the register (row 
of flip-flops) in which is entered the number 
to be (square) rooted (in the "square rooter" 
computer project) . 

READOUT I COMPARATOR - the output of 
either a gate or a flip-flop (the computer 
output) in a comparator computer project 
which indicates that a comparison is valid 
if it is a 11111 and invalid if it is a "0". 

READOUT LAMP - the light on the flip-flop 
which is "on" when the "TRUE" output is a 
1'1 11 and is "off" when the "TRUE" output is 
a "0"; the display light on the flip-flop. 

REFERENCE COLUMN - a column used to 
translate a binary number into the decimal 
system. The column is headed by the 
appropriate power of 2 which the binary 
digit position represents (i. e . , starting 
from the right and proceeding to the left, 
we have: (11111 , 11211 , 11411 , 11811 , "16", etc . ). 

REGISTER - a row of flip-flops wired to 
perform a specific computer function such 
as t.o co\Ult or to shift. 

REGISTER, ACCUMULATOR - the register 
(row of flip-flops) that displays an answer 
such as in the case of the "adder" and "sulr 
traoter" wiring projects . 
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REGISTER, ADDEND - the register (row 
of flip-flops) in which the nwm er to be 
added is entered (in the "adder" computer 
project). 

REGISTER, COMPLEMENTARY TRANS­
FORMATION - a register (row of flip-flops) 
which will transform, by a computer 
process, any number (entered into the 
register} into its complement and display 
the complement in the same register. 

REGISTER, DIVIDEND - the register (row 
of flip-flops) in which is entered the 
number to be divided (in the "divider'' 
computer project). 

REGISTER, DIVISOR - the register (row 
of flip-flops) in which is entered the 
number by which a second number is 
being divided (in the "divider" computer 
project). 

REGISTER, MULTIPLICAND - the regis­
ter (row of flip-flops) in which is entered 
the number which is to be multiplied by a 
second number (in the "multiplier" 
computer projects). 

REGISTER, MULTIPLIER - the register 
containing the number by which another 
number is to be multiplied (in the "multi­
plier" computer projects). 

REGISTER, PRODUCT - the register 
(row of flip-flops) which indicates the 
answer after a multiplication is performed 
(in the "multiplier" computer projects). 

REGISTER, QUOTIENT - the register 
(row of flip-flops) which indicates the 
answer after the computer division pro­
cess is completed (in the "divider" 
computer project) . 

REGISTER, RADICAND - the register 
(row of flip-flops) in which is entered the 
number t.o be (square) rooted (in the 
"square rooter" computer project). 

REGISTER, ROOT - the register (row of 
flip-flops) which displays the answer 
after the square root process is com­
pleted (in the "square rooter" computer 
project) . 
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REGISTER, SHIFT - a wired configuration 
of flip-flops that will shift all "l's'' in a 
binary number either one position to the 
left or one position to the right with each 
pulse command. 

REGISTER, SUBTRAHEND - the register 
(row of flip-flops) in which the number to be 
subtracted is entered (in the "subtracter" 
computer project) . 

REGISTER, TRAVELIJNG "1" - the 
register (row of flip-flops) which automat­
ically enters a 1'1" at the extreme left and 
shifts it successively one position to the 
right until it reaches the last position on 
the right at which time it is shifted out (in 
the 1'square rooter" computer project). 

REMAINDER - the quantity that remains 
after subtracting one number from another; 
the quantity that remains in excess after 
each division process is completed. 

RESET - to change a flip-flop t.o the "off'' 
state (by shorting pins A and B together or 
by applying current-limited voltage to the 
"reset" input pin B); to change all flip-flops 
in a register to the "O" state. 

"RESET" INPUT - pin Bon the flip-flop 
which will turn off the readout lamp when 
a current- limited voltage is applied at that 
point. 

RESISTOR - a two-lead electronic device 
which is used to limit electronic current. 

RISE TIME - the time required for a volt­
age up- swing to occur. The time which 
elapses during the change from zero volts, 
to some specific voltage. 

ROOT - a second number which, when 
multiplied by itself a specified number of 
times, will yield back the first number. 

ROOT, SQUARE - a second number which, 
when multipliE!d by itself, will yield back 
the first number . 

ROOT CONTROL - a wired configuration 
of flip-flops with or without logic gates 
which generates pulse signals to perform 
the square root process (in the "square 
rooter" computer project). 

ROOT REGISTER - the register (row of 
flip-flops) which displays the answer 
after the square root process is completed 
(in the "square rooter" computer project). 

ROUNDING "OOWN'' - (see ROUNDING 
OFF) leaving unchanged the first digit to 
the left of the 11breaking point" when 
rounding off. 

ROUNDING "OOWN", BINARY - (see 
ROUNDING OFF, BINARY) leaving un­
changed the first binary digit to the left 
of the "breaking point" if the first binary 
digit to the right of the "breaking point" 
was 11011 • 

ROUNDING "DOWN", DECIMAL - (see 
ROUNDING OFF, DECIMAL) leaving 
unchanged the first digit to the left of 
the 11breaking point" if the first digit to 
the right of the "brealdng point" was 4 or 
less. 

ROUNDING OFF - the process of changing 
to "0" all digits in a number whlch are to 
the right of a specified position in that 
number, and dropping those digits if they 
are in the fractional portion. The first 
digit to the left of the "breaking point" is 
either increased by one unit or left un­
changed depending on the first number to 
the right of the "breaking point". 

ROUNDING OFF I BINARY - the process 
of changing to 11011 all binary digits which 
are to the right of a specified "breaking 
point", and dropping those digits if they 
are in the binary fractional portion. The 
first digit to the left of the ''breaking 
point" is increased by "1" if the first 
digit to be changed was "1", and left un­
changed if the first digit to be changed 
was already 11 011 • 
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ROUNDING OFF, DECIMAL - the process 
of changing to 11011 all digits which are to 
the right of a specified "breaking point", 
and dropping those digits if they are in the 
fractional portion. The first digit to the 
left of the "breaking point" is increased by 
1 unit if the first digit to be changed was 5 
or more, and left unchanged if the first to 
be changed was 4 or less. 

ROUNDrnG "UP" - (see ROUNDING "OFF") 
increasing by one unit the first digit to the 
left of the "breaking point". 

ROUNDrnG "UP" I BINARY - (see ROUND­
ING OFF, BINARY) increasing by "l" the 
first binary digit to the left of the "breaking 
point" if the first binary digit to the right of 
the "breaking point'' was "l". 

ROUNDING "UP", DECIMAL - (see 
ROUNDING OFF, DECLl\iAL) increasing by 
1 unit the first digit to the left of the "break­
ing point" if the first digit to the right of 
the "breaking point" was 5 or more. 

"SAMPLE" COMMAND - a command pulse 
which causes the sample-and-hold logic to 
copy a number from one register into a 
second register, leaving the number in the 
first register unchanged. 

SAMPLE- AND-HOLD- the process of 
sensing a number entered in one register 
and copying it into a second register with­
out removing the basic number from the 
first register; a wired configuration of 
electronic logic gates which will perform 
the operation described above. 

SENSE - a wired configuration of logic 
gate(s) which determines some condition 
about a register or registers (i. e. , whether 
a number is present in a register; whether 
the last digit to the right in a register is 
"1", etc.) and, based on this condition, will 
control the execution of some command. 

SENSE, DIGIT - the use of an 11OR" logic 
gate to determine whether or not a number 
is present in a register. 
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SET - to change a flip-flop to the "on" 
state (by shorting pins D and E together 
or by applying c urrent-limited voltage 
to the "set" input pin E), 

"SET" INPUT - pin E on the flip-flop 
which will turn on the readout lamp when 
a current-l imited voltage is applied at 
that point. 

SHIFT - to transfer all 111 's 11 in a binary 
number either one position to the left or 
one position to the right. 

SHIFT ADDER - a wired configuration of 
flip-fl.ops that consists of one full adder 
and three shift registers. Two shift 
registers shift the two numbers to be 
added through the full adder and the 
answer is shifted out in the third shift 
register. 

"SHIFT" COMMAND - a command pulse 
which causes the number entered in a 
shift register to advance one position 
either to the right or the left (depending 
on the type of shift register). 

SlllFT REGISTER - a wired configuration 
of flip-flops that will shift all "1' s" in a 
binary number either one position to the 
left or one position to the right with each 
pulse command. 

SlllFT REGISTER, LEFT - a wir ed con­
figuration of flip-flops that will shift all 
1111 s" in a binary number one position to 
the left with each pulse command. 

SHIFT REGISTER, RIGHT - .a wired con­
figuration of flip-flops that will shift all 
1111 s" in a binary number one position to 
the right with each pulse command. 

SHIFT SUBTRACTER - a wired configur­
ation of flip-flops and logic gates that 
consists of one full subtracter and three 
shift registers. Two shift registers shift 
the two numbers through the full subtract­
er and the answer is shifted out in the 
third shift register. 
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SHORT - a direct-wired connection between 
two electrical points such as touching or 
wiring two pins together. 

SIGNAL - an electrical command generated 
by a pulse on the "down-swing'' from 11111 

(6 volts) to "0" (0 volts) which will act as a 
trigger and cause one or more flip-flops to 
change state. 

SQUARE ROOT - a second number which, 
when multiplied by itself, will yield back 
the first number. 

SQUARE ROOTER - a computer project 
which consists of a wired configuration of 
flip-flops, logic gates, and pulse generators 
which will extract the square root from a 
given binary number. 

SQUARE WA VE - an electrical fluctuation 
between O volts and some other voltage (for 
example, 6 volts) such that the rise time 
and fall time are very small compared to 
the time duration at 6 volts and O volts 
which should be nearly equal. Shown as 
follows: 

STATE - the condition which describes a 
flip-flop or logic gate as being "on" ("1", 
"TRUE") or "off" {''0", "FAI.SE"). 

STEERING INPUTS - the input pins on the 
flip-flop (pins C and F) which will or will 
not cause a change of state to take place 
depending on whether or not an input voltage 
is present. The pins C and F must have 
opposite inputs (i.e., one pin 11111 and the 
other "0") to provide steering. If pin C 
input is a "1", the flip-flop will change 
state to "0" if in the "1" state, and remain 
"0" if already in the "0" state. If pin F 
input is a "1", the flip-flop will change 
state to "1" if in the "0" state, and will re­
main "1" if already in the "111 state. 

SUBROUTINE - a specific computer 
process which forms part of another 
more complicated computer process. 
Example: the addition process is a sub­
routine in the cumulative-addition 
multiplier. 

SUBTRACT CONTROL - the lfhalt" com­
mand which is used t.o control (or stop) 
the subtraction process in the "sub­
tracter" configuration. 

SUBTRACTER - a wired configuration of 
flip-flops and/ or logic gates which will 
perform the arithmetic process of 
subtraction. 

SUBTRACTER, FULL - the complete 
logic circuitry which generates both a 
"difference" and a "borrow" output. 

SUBTRACTER, HALF - the logic cir­
cuitry which generates only a "difference" 
output and not a "borrow'' output; (also 
called a "SUM" gate) the half-adder and 
half-subtracter are identical as are the 
"sum" and "difference" outputs. 

SUBTRACTER, LOGIC - a wired configur­
ation of logic gates and/or flip-flops which 
will perform subtraction (in binary). 

SUBTRACTER, SHIFT - a wired config­
uration of flip-flops and logic gates that 
consists of one full subtracter and three 
shift registers. Two shift registers shift 
the two numbers through the full sub-
trac ter and the answer is shifted out in 
the third shift register. 

SUBTRACTER, NON-GATED BINARY - a 
wired configuration of only flip-flops that 
will perform subtraction (i.e. , that will 
allow a binary number to be subtracted in 
one register and the answer to be displayed 
in a second register). Almost the same 
as the non-gated adder except that both 
upper and lower registers are "UP'' 
counters. 
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SUBTRACTIO IDENTITY - a logic ex­
pression which defines a 11difference", a 
"borrow", or both for two or more binary 
numbers. 

SUBTRAHEND - that number which is to be 
subtracted from another number. 

SUBTRAHEND REGISTER - the register 
(row of flip-flops) in which the number to be 
subtracted is entered (in the "subtracter" 
computer project). 

SUM - the answer which results from the 
addition of two numbers; the binary digit 
which represents the addition of two other 
binary digits, ignoring the "carry". 

"SUM" GA TE - an electronic circuit which 
forms a logic gate whose output is a "1 11 only 
when the parity of all 11111 inputs, regardless 
of how many, is odd. The gate output is "0" 
if the parity of all "1" inputs is~-

11SUM" LOGIC OPERATION - the logic oper­
ation denoted by the "plus" (+); the operation 
which answers the question: "Is the number 
of 'TRUE' facts odd?" or "Is the number of 
111 inputs odd?" 

TERM, LOGIC - that singular or multiple 
part of a logic expression which is separated 
by a logic operator (i.e. , grouped by a logic 
operator). 

THEOREM, LOGIC - a logic equation which 
can be proved by means of a "TRUTH" table 
or by means of other logic equations or 
expressions. 

TIME MACHINE - a computer project which 
consists of a wired confi.guration of flip-flops 
and logic gates controlled by a very accurate 
timing pulse which will keep time in the same 
manner as a clock and can also be expanded 
to determine days, months, years, leap 
years, etc. 

TRANSFER - to use a command pulse to 
place a number (or digit) already entered in 
one register (or flip-flop) directly, unchanged, 
into a second register (or flip-flop). The 
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TRANSFER (continued) 
original register (or flip-flop) is cleared 
during the process. An example is the 
non-gated "adder" computer project 

, where a number is transferred from the 
addend register to the accumulator. 

TRANSISTOR - a three-lead electronic 
device which is used to control the flow 
of electronic voltage and current (see 
also BASE, COLLECTOR, and EMITTER). 

TRAVELLING 11111 REGISTER - the 
register (row of flip-flops) which auto­
matically enters a "l" at the extreme 
left and shifts it successively one position 
to the right until it reaches the last 
position on the right at which time it is 
shifted out (in the "square rooter" com­
puter project). 

TRIGG ER - the input pin (pin G) on a flip­
flop where a pulse command signal will 
cause the flip-flop to change state; to 
cause a flip-flop to change state. 

TRIGGER INPUT - the input pin (pin G) 
on a lip-flop where a pulse command 
signal will cause the flip-flop to change 
state. 

TROUBLESHOOT - to locate and determine 
the cause of problems that may occur in 
the wiring or operation of computer 
circuits. 

TRUE - a proven affirmative logic fact; 
opposite of IIFALSE"; the condition of a 
flip-flop or logic gate being in the "1" or 
"on" state (flip-flop readout light on); an 
input that is a 11111 • The side of the flip­
flop with the readout light {also all flip-flop 
outputs and inputs, pins A, B, and C, on 
the same side as the readout light). 

"TRUE" DIRECTOR OUTPUT - the output 
pin (pin A) on the "TRUE" side of the flip­
flop; also !mown as the "TRUE" director 
output of the flip-flop. 
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"TRUE" FOLLOWER INPUT - the input pin 
(pin C) on the "TRUE" side of the flip-flop 
which causes steering depending upon 
whether or not an input voltage is present. 

"TRUE" OUTPUT - the output pin (pin A) on 
the "TRUE'' side of the flip-flop; also !mown 
as the "TRUE" output of the flip-flop. 

"TRUE" SIDE - the side of the flip-flop with 
the readout light. 

"TRUTH" TABLE - a tabular representation 
of logic expressions and facts which indicates 
all possibilities of "TRUE" and "FALSE". 

"UP" COUNTER - a binary counter that 
starts from zero and increases its value by 
"1" with each pulse signal input. In other 
words, it "counts upward" to any desired 
number. 

"UP-DOWN" CONTROL - the extra logic 
gates wired into a binary counter so that the 
free-running counter will count alternately 
"UP" and then "DOWN", changing between 
"UP" and "DOWN" when an overflow occurs. 

"UP-DOWN" COUNTER - a binary counter 
wired with extra logic gates so that the free­
running counter will count alternately "UP" 
and then switch automatically to "DOWN" 
after resetting from the "UP" count. It will 
switch automatically back to "UP" after the 
"borrow11 overflow is generated. 

UP-SWING, VOLTAGE - the change of the 
output of a pulse generator, flip-flop, or 
logic gate, from zero volts, to a specific 
voltage. 

VOLTAGE, CURRENT- LIMITED - voltage 
present when a resistor is placed in series 
with the power source (the value of 1,000 
ohms should be used for most current limit­
ing described in this text). 

WIRE, DIODE - a wire with a diode spliced 
in the middle. The main use for the diode 
wire is to stop (or halt) the pulse from the 
pulse generator. 

WIRES, CONNECTING - hoop-up wires 
of various lengths with alligator clips on 
each end (or with stripped ends for 
soldering) which are used to tie together 
electrical points (pin connections) as 
shown in the wiring diagrams. 

WIRING DIAGRAM - that part of a logic 
diagram which shows where wiring pin 
connections must be made. 

YEAR - a time interval of approximately 
365 days, more accurately equal 365 days, 
5 hours, 48 minutes, and 46 seconds. 

YEAR, CENTURY - a year which ends in 
"00" (is divisible by 100) such as 1700, 
1800, 1900, 2000, and 2100. 

YEAR, LEAP - a time interval which has 
exactly 366 days instead of 365 days. 
Occurs in all non-century years divisible 
by 4, and in all century years divisible by 
400. 

YEAR, NORMAL - a time interval of 
exactly 365 days. 
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BCD counter, 74-75 
Binary, 5 
Binary addition, 21-22 
Binary coded decimal counter, 74, 75 
Binary complement, 34, 35 
Binary, conversion from decimal, 25-28 
Binary, conversion to decimal, 20, 28 
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Binary division, 23- 24 
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Binary electronic computer circuits, 36 
Binary fractionals, 24-25 
Binary fractions, 29 
Binary multiplier, full-logic, 91-98 
Binary multiplication, 22-23 
Binary number system, 20 
Binary point, 23-25, 33 
Binary "rounding off", 34 
Binary shift register, 69-70 
Binary square root, 32-33 
Binary subtraction, 22 
Binary-to-decimal decoder, 153-154 
Binary "up" counter, 68 
Bistable multivibrator, 36 
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Boolean Approach, 5 
"Borrows", 22 
Bracket, overhead, 25 
Brackets, 2, 6, 8 
Braces, 2 

Care of units, 66-67 
11Carry", 21 
Cautions, 58 
Century, Quad, 136 
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Circuits, binary electronic computer, 3 6 
Circuits, electronic gate, 18 
Circuits, LJBE electronic, 36, 37, 38, 39 
Clock, time machine, 139-150 
Collector, 67 
Column, truth, 13, 15 
Commands, 62- 64 
Commutative laws, 7 
Comparator, 11 Equal To", 115-118 
Comparator, "Greater Than\' 109-112 
Comparator, "Greater Than or Equal 

To", 122-125 
Comparator, "Less Than", 112-115 
Comparator, "Less Than or Equal To", 

126-129 
Comparator, "Unequal To", 118-122 
Comparators, 108-109 
Comparison, general, 13 0-134 
Complement, binary, 34-35 
Computer, electronic, circuit operation, 

58 
Computer, electronic, logic expressions, 

19 
Computer, electronic, logic notation, 18 
Conclusion, 2, 3, 4, 5, 36, 42 
Connections, 58-59 
Connections, power pin, 61 
Connections, wire, 60 
Converse, 10 
Conversion, binary to decimal, 20, 28 
Conversion, decimal to binary, 25-27 
Count, binary, 21 
Counter, BCD, 74-75 
Counter, binary coded decimal, 74-75 
CoWtter, binary, "down", 68-69 
Counter, binary, "up11 , 68 
Counter, "day-of-the-month", 139 
Counter, gated 11 up-down11 1 90-91 
Counter, "hour", 139 
Counter, "minute", 139 
Counter, "second", 139 
Counter, "year" BCD decade, 139 
Cumulative-addition multiplier, 99-101 
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Debugging, 65-66 
Decimal, conversion from binary, 20, 28 
Decimal, conversion to binary, 25-27 
Decimal fractionals, 24 
Decimal point, 23 
Decoder, binary-to-decimal, 153-154 
DeMorgan's theorems, 7, 13, 14 
Denominator, 29 
Diagrams, logic , 60-61 
Dice, electronic, 150-153 
Diode wire, 59 
Direct display, 55-57 
Direct output, 56 
Director output, "false", 3 7 
Director output, "true", 37 
Distributed expression, 8 
Distributive laws, 8, 15 
Dividend, 23, 24 
Divider, 101-103 
Division, binary, 23- 24 
Divisor, 23, 24 
"Dot", 2, 4 
Double negation, 10 
Down-swing, 37-39 
Down-swing triggering, 43 , 45 

Electronic circuits, LIBE, 36, 37, 38, 39 
Electronic computer circuits, binary, 36 
Electronic computer circuit operation, 58 
Electronic computer logic expressions, 19 
Electronic computer logic notation, 18 
Electronic dice, 150-153 
Electronic gate circuit, 18 
Electronic gate symbols , 18 
Emitter, 67 
"EOR", 2 , 3 , 4 , 5, 8, 10, 18, 42 
"EOR" gate, 50-52 
"Equal'', 2 
"Equal To" comparator, 115-118 
"Even parity", 53 
"Exclusive OR" gate, 50-52 
Expression; distributed, 8 
Expression, factored, 8 

Expressions, logic, 19 
Extracting square root, 29-33 

Fact, 2 , 5, 12, 36, 42 
Factored expression, 8 
Fall, 38 

"False", 2, 3 , 4, 5, 12, 20, 36, 37, 38 
11False" director output, 37 
11Falsett follower input, 37 
Flip- flop, 18, 36-39 
Flip-flop, LIBE, 43 
Fractionals, binary, 24-25 
Fractionals, decimal, 24 
Fractionals , infinite, 25 
Frac tionals, irrational, 25 
Fractions , binary, 29 
Fundamental identities, 7, 9, 16, 17 
Fundamental laws , 7 
Fundamental logic theorems, 7 

Gate, 2, 19 
Gate, "AND", 42-44 
Gate, "AND" & "OR", 47-48 
Gate, "AND" & "OR " negative, 48-50 
Gate, electronic, 18 
Gate, electronic, symbols, 18 
Gate, "EOR", 50-52 
Gate, "Exclusive OR", 50-52 
Gate input pins, 43-45 
Gate, inverter, 54-55 
Gate, logic, 42 
Gate, "NOT", 54-55 
Gate, "OR", 45-47 
Gate, parity, 53 
Gate output triggering, 55-57 
Gate, "SUM", 52-54 
Gate, "SUMMATION", 52-54 
General comparison, 130-134 
Generator, pulse, 36, 39-41 
Glossary, 155-172 
"Greater Than" comparator, 109-112 
"Greater Than or Equal To" comparator, 

122-125 
Group, 2 

Half-adder, 53 
Horizons, unlimited, 154 

Identities, addition, 10-11, 17 
Identities, fundamental, 9, 16, 17 
Identities, logic, 7 
Identities, special, 10 
Inequality, 8 

Infinite fractional, 25 
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Input, "false" follower, 37 
Input pins, 47 
Input, "reset", 3 7 
Inputs, 2 

Input, "set", 3 7 
Input, "trigger", 37-38 
Input, "true" follower, 3 7 
Intrinsic problems, 65-66 
Invert, 10 
Inverter, 18, 42 
Inverter gate, 54-55 
Irrational fractional, 25 
Irrational square root, 30 
"V' line, 30, 32 
Labels, 59-60 
Laws, commutative, 7 
Laws, distributive, 8, 15 
Laws, logic, 7 
Layout, physical, 58-59 
Leap year, 136 
"Less Than" comparator, 112-115 
"Less Than or Equal To" comparator, 

126-129 
LIBE electronic circuits, 36, 37, 38, 39, 

40, 42 
LIBE flip-flop, 43 
Logic, 2, 5 
Logic adder, 75-81 
Logic brackets, 6 
Logic diagrams, 60-61 
Logic expressions, 19 
Logic functions, 2 
Logic gates, 42 
Logic interface, "day-month-year", 139 
Logic interface, "leap-year, leap-century, 

century", 139 
Logic notation, 2, 18 
Logic operation, 2, 3, 4, 18 
Logic operators, 2, 12, 13 
Logic parentheses, 6 
Logic, "Sample-and-Hold", 88-90 
Logic subtracter, 81-86 
Logic symbols, 2, 18 
Logical multiplication, 8 
Logical "plus", 8 

Mounting, 58-59 
Mounting boards, 59 
Multiplicand, 22, 23 
Multiplication, binary, 22-23 

Multiplication, logical, 8 
Multiplication, numerical, 8 
Multiplier, 22, 23 
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Multiplier, binary, full-logic, 91-98 
Multiplier, cumulative-addition, 99-101 
Multivibrator, astable, 39 
Multivibrator, bistable, 3 6 

"NAND", 2, 4, 42-45, 48- 50 
Negation, 10, 12 
Negation, double, 10 
Negative "AND" & "OR" gates, 48-50 
Nomenclature, 42 
Non-gated binary adder, 71-72 
Non-gated computer projects, 68 
Non-gated subtracter, 72-73 
"NOR", 2, 4, 42, 45, 48-50 
"NOR" output, 45 
"NOT" gate, 54-55 
Number system, binary, 20 
Numerator, 29 
Numerical "plus", 8 

Notation, electronic computer logic, 18 

Odd parity , 53 
Ohmmeter, 67 
Operation, electronic computer circuit, 

58 
Operation, logic, 2, 3, 4, 18 
Operators, logic, 2, 12, 13 
"OR", 2, 3, 5, 7, 18, 42 
"OR" gate, 45-47 
"OR" output, 45 
Output, direct, 56 
Output, "false" director, 37 
Output pins, 47 
Output, pulse, 39 
Output, "true" director, 37 
Outputs, 2, 38 
Overhead bar, 2, 4, 81 10 
Overhead bracket, 25 

Parentheses, 2, 6, 8, 10 
Parity, 3 
Parity, even, 53 
Parity gate, 53 
Parity, odd, 53 
Physical layout, 58-59 
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Pins, gate input, 43, 45 
Pins, input, 47 
Pins, output, 47 
"Plus", 2 
"Plus", logical, 8 

"Plus", numerical, 8 
Point, binary, 23, 24, 25, 33 
Point, decimal, 23 
Positive, 10 
Post meridiem, 141 
Power pin connections, 61 
Power sources, 61-62 
Problems, intrinsic, 65-66 
Product, 23 
Projects, advanced computer, 74 
Projects, non-gated computer, 68 
Pulse generator, 36, 39-41 
Pulse output, 39 

Quad century, 136 
Quotient, 23, 24 

Radical, 29 
Radicand, 104 
Reference column, 26, 28 
Register, addend, 71 
Register, binary shift, 69-70 
Register, complementary transformation, 

70-71 
Register, "month" shift, 139 
Register, "Travelling 1", 105 
Remainder, 23, 24, 30 
Remainder, binary, 32, 33 
Repair of units, 66-67 
"Reset", 64, 65 
"Reset'' input, 37 · 
Rise, 38 
Root, square, 29-32 
Root, square, binary, 32-33 
Rooter, square, 104-108 
Rounding "down", 34 
Rounding "off", 34 
Rounding llup", 34 

"Sample-and-Hold" logic, 88-90 
Science of reasoning, 2 
"Senses", 62-64 
"Set", 64-65 

"Set" inp~t, 3 7 
Shift adder, 86-88 
Sources, power, 61-62 
Special identities, 10 
Square root, 29-31 
Square root, binary, 32-33 
Square rooter, 104-108 
Square wave, 37, 39 
Subtracter, logic, 81-86 
Subtracter, non-gated binary, 72-73 
Subtraction, binary, 22 
''SUM", 2, 3, 5, 10, 18, 42 
11SUM" gate, 52-54 
"SUMMATION" gate, 52-54 
Symbols, 2 
Symbols, electronic gate, 18 
Symbols, logic, 18 
System, binary number, 20 

Tables, truth, 12, 13, 14, 15, 16, 17, 
21 

Theorems, DeMorgan's, 7, 13, 14 
Theorems, logic, 7 
Time machine, 134-138 
Time machine clock, 139-150 
Transistor, 67 
Triangle, 2, 3 
Triggering, down-swing, 43, 45 
Triggering, gate output, 55-57 
Trigger input, 37-38 
"True", 2, 3, 4, 5, 20, 36, 37, 38 
"True" director output, 37 
"True" follower input, 37 
Truth column, 13, 15 
Truth tables, 12, 13, 14, 15, 16, 17, 21 

"Unequal To" comparator, 118-122 
Units, care and repair of, 66-67 
Unlimited horizons, 154 
"Up-Down" control, 91 
"Up-Down" counter, gated, 90-91 
Up-swing, 37, 38 

Year, 136 

Wave, square, 37, 39 
Wedge, 2, 4 
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Wire connections, 60 
Wire, diode, 59 
Wires, 59 
Wiring, 60-61 
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