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THE USE OF ARITHMETIC IN RADIO-TV

OU need not read this book unless

you want to! You can complete
your course and obtain A’s all the way
through, even if you never read it.
However, if you do decide to go ahead,
you will find not only that arithmetic
is interesting and even fascinating at
times, but also that you use it in your
everyday life much more, perhaps,
than you realize.

When you buy a twenty-five cent
item in the ten-cent store, you may
hand the clerk a one-dollar bill and
receive seventy-five cents in change.
Most of us like to check on our change
to make certain that the sales person
does not make a mistake. Therefore
we usually perform the very simple
mental arithmetic of subtracting twen-
ty-five cents from one dollar and find-
ing that it leaves seventy-five cents.
Similarly, you perform simple addi-
tion when you look at the money in
your hand and mentally add up the
fifty-cent piece, the two dimes, and
the nickel, which constitute your
seventy-five cents change.

As a matter of fact, you are actually
using that rather fearsome sounding
tool known as decimals, in your every-
day living! We're not going to discuss
decimals here, but we shall later.
You've probably forgotten the fact
that when you see a price ticket
marked $2.50 you do not think of it
as “two and fifty-hundredths dollars,”
you unconsciously interpret it, and
know it means two and a half dollars.

Every time you add up your income
for your income tax or do anything at
all with money, you're working with a
decimal system. Later on we will give
you some rules for handling decimals

and working with them. When we come
to that point, you may be surprised to
realize that you knew it “all the time,”
but just didn’t realize how simply your
daily experiences of living with deci-
mals can be applied to calculations.
In your work as a serviceman or a
communications technician you will
find you hardly ever need to make a
calculation. If you’re repairing a re-
ceiver and have to replace a part, you
will find the correct value from the
serviee instructions, or from the value
of the defective part. About the only
times you will need to make any sort
of calculation are if you are designing
some new equipment or working out
some new ideas for apparatus to be
used around your shop, or in replac-
ing a part that has completely disinte-
grated beyond recognization. However,
it is always useful to be able to make
these calculations if necessary. As you
will see as you go through this book—
that is, of course, if you decide to read
it—many of the calculations for radio
and television can be made mentally.
At least, quickly calculating mentally,
in the way we will show you later,
can usually give you a sufficiently close
idea of the value required, and avoid
the need for any very precise figuring.
Even the operator-technician in the
communications field has very little
use for even simple arithmetic, once he
has obtained his license. Anyone look-
ing through the study guide to the
FCC licenses could not be blamed for
thinking there are a tremendous num-
ber of questions involving arithmetic,
but actually, this is not so. As a mat-
ter of fact, out of the scores of ques-
tions in any particular element in the



examination, you are asked only fifty
questions, and out of this number only
a few of them involve any calculation!
Even then, you don’t have to answer
every single question. If you can get
a grade of 70%, you can pass the ex-
amination.

With all these things in mind, we
at NRI prepared this book for you
purely as a reference text—to be re-
ferred to if you want to review the
fundamentals of arithmetic. You can
use this book not only in connection
with your course, but also, in connec-
tion with your everyday living and it
may even help you figure out your in-

come tax—or any of the other deduec-
tions, such as social security, which are
made from everybody’s pay checks.

As we said at the beginning of this
introduction, you do not need to read
this book to get all A’s on your course,
and you need not study it except as a
source of information that goes beyond
that contained in the lessons. You can
understand how radio and television
receivers and equipment work without
being able to perform even simple sub-
traction and addition. But if you read
on into the book, you may be surprised
at how much you have missed by let-
ting long words scare you!
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Simple Arithmetic

ADDITION

Usually we do not have any diffi-
culty in adding up a few numbers. Of
course, sometimes, such as when we go
for the weekly grocery supplies we
have quite a long column of figures to
check. But generally our addition in-
volves only a few things such as a
lunch check consisting of three items
—coffee, hamburger, and ice cream. We
are so used to adding up these figures
and checking them mentally to make
certain that we get the right change,
that we do it without thinking—that’s
mental arithmetic.

However, we may be working with
a voltage-divider network in a tele-
vision set that has as many as nine
sections. This could involve a long
column of large numbers such as is
shown below. Let us assume that we
have measured each section, in turn,

‘on a very accurate resistance bridge

and now we want to know the total
resistance. We might, of course, meas-
ure the resistance of the entire unit, but
there may be practical reasons why
we cannot do this, So we find it neces-
sary to total, or add up all the figures.
To do this, we set the figures in a col-
umn and proceed to add them like this:

585

4826
2958
8277
a) 3936
5729
9127
6344
7413
1662

50272

52
b) 32 check
49
45

50272

To start adding this column of figures
we commence with the right hand col-
umn—this is often known as the “units
column.” As a way of saving time and
mental effort as we add up figures we
don’t say “two plus three are five, plus
four are nine,” and so on. We mentally
add the two and three and say “five.”

We add this to the next figure and
mentally say “nine,” and so on up the
column. As a matter of fact if you are
alone or in a place where your adding
is not likely to confuse anyone there is
no reason why you shouldn’t (while
adding by inspection, as this process
is often called), say aloud the sum of
the numbers you add. But you should
remember, that, as with reading, you
do not acquire speed and proficiency
by working aloud.

In the last paragraph we referred to
the extreme right-hand column as the
“units column.” As we move toward
the left, the next column is the “tens,”
the next the “hundreds,” and then the
“thousands,” and so on. It is not neces-
sary to think of the columns of figures
in these terms, but sometimes giving
the columns these labels helps in han-
dling figures.

Commencing our addition, we find
that the right-hand column adds up to
52. As children we probably learned to
write down the 2 and carry the 5 to
the next column. If you like you can
put the 5 at the head of the next col-
umn as shown. Or, you can write down
the 52 under the tens and units col-



umns as shown in (b). If you do this,
a very small, simple addition at the
end of the main addition will give you
the grand total as well as a simple
method of double checking the addi-
tion of the individual columns.

Next we add the tens column, and
we find that the total of that column is
32. We write down the 32 beneath our
first total but move it one place to the
left as shown in (b). You can of course
put down the 3 at the top of the next
column as in (a). We continue in this
way as we move to the left putting
down the individual total of each
column as shown in section (b),
marked “check,” or we continue with
method (a), putting down the last digit
and carrying the rest over and adding
it in with the next column.

No matter which way we performed
our addition, by method (a) or (b)
we should have the answer 50272.

By writing down the sub totals of
each column the way we have shown
in (b) we have only very small figures
to work with. This makes it much
easier to check for errors in individual
columns and to perform the final ad-
dition.

Some people like to start at the top
of the column when adding, and work
their way down, others like to start at
the bottom and work their way up.
Which method you choose is imma-
terial, provided you add every figure.

If you have to do a large amount of
addition involving long columns of fig-
ures you can often save time by adding
three or four figures at a time. For
example, in this problem, starting at
the top, 6 plus 8 plus 7 plus 6, etc., we
can add as 14 (6 plus 8) plus 13 (7
plus 6) plus 9 plus 11 (7 plus 4), etc.
Also by looking for figures that add
up to 10 as you go down the column
you can save time. Thus, if there are
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a7and a3, abandad4 oran8and
a 2, even though they are separated
by one or two numbers we can im-
mediately add 10 to the total and then
add the intermediate numbers. The
important thing here is to remember
which figures you have added, and tc
be sure that you do not leave any out
—or add any twice!

Sometimes there are several repeti-
tions of the same number. If this hap-
pens, it is often easier to count the
number of times this figure occurs and
multiply it by this number. The rest
of the figures in the column can then
be added and the two totals added to-
gether will give the total for the entire
column.

Probably the most important thing
to remember in handling figures in
radio and television is that we can
combine only figures dealing with the
same units. Thus we cannot add ohms
and microfarads, or henries, any more
than you can add dollars and gallons
of gasoline.

Similarly, we cannot add quantities
which are not expressed in the same
unit. By this we mean that we cannot
add amperes and milliamperes, we first
have to convert both quantities to
similar terms. Thus, in adding 100
milliamperes to 1 ampere, we would
convert the ampere to milliamperes—
1000—and add 100 milliamperes. Our
total then would be 1100 milliamperes.

Below are three columns of figures.
If you wish, practice adding them up
using both systems. Try to be as fast
as you can, consistent, of course, with
accuracy.

53296 4257 4139
19387 9316 3146
23845 8297 9357
72971 5489 2879
68346 2568 5764
71291 4697 3192
36572 3963 8653

The correct answers are on page 37.

SUBTRACTION

Most of us find little difficulty in
subtracting even complicated numbers.
But just in case you have forgotten
any of the very simple rules, let us
work out the following problem, and
go through the various steps involved.

7,849,630
—4291375
3,558,255

Starting at the right (the units col-
umn), we see at once that we cannot
subtract 5 from zero—we all know
from our income tax problems that
you can’t take something away from
nothing! Therefore we have to borrow
10 from the next number to the left.
Taking away 5 from the 10 we bor-
rowed, we have 5 left. We then move
one place to the left, since this is the
“tens” column, and we have borrowed
one ten from it, we have 2 instead of 3,
from which we must take away 7.
Again we must borrow from the next
column over, and the 2 now becomes
12. Because 7 from 12 leaves 5, we
write down 5 in the answer.

We again move one place to the left
and subtract 3 from 5—not 6 because
we borrowed one from that six in the
last operation. 5 minus 3 equals 2 so
we write this down. In the next column,
1 taken away from 9 leaves 8, In the
fifth column, to subtract 9 from 4 we
have to borrow 1 from the next column,
making it 9 from 14, leaving 5.

The next subtraction is simple, 7,
(because we borrowed one) minus 2
equals 5, and in the last column, to the
extreme left, 7 minus 4 equals 3.

To check the answer to this type of
problem, all we have to do is add the
answer which we obtained below the
horizontal line to the smaller number

(this is normally the lower one). If
we have subtracted properly, the total
of these two numbers is the same as
the larger (upper) number of the
problem, thus:

4,201,375
43,558,255
7,849,630

Here are some subtraction problems

for you to try:
3572
—1831

9007
—6321

2904
—1692

The correct answers are on page 37.

MULTIPLICATION

Don’t let the long word “Multipli-
cation” frighten you. Multiplication is
nothing more than a form of addition.
If you see seven multiplied by nine
(written 7 X 9), you know that this
means the sum of nine 7’s. On the other
hand, it could also mean the sum of
seven 9’s. However, if we wrote 9 down
7 times and then added them it would
take quite a long time. Of course, we
would get 63 whether we did it by ad-
dition or multiplication.

An interesting point arises here—
if we write 7 down 9 times and add it
up, we get the sum of the column. On
the other hand, when we write 7 X 9
and multiply we get the same answer,
63, this is known as the product.

In the problem 7 X 9, since we are
multiplying 9 by 7 we say that 7 is
the multiplier and 9 (the number that
is being multiplied), we call the multi-
plicand.

The whole subject of mathematics
was developed through a search for
shortcuts and easier and quicker ways
of doing things. Multiplication tables
take the place of a lot of very awkward



and cumbersome additions. Table 1
is a multiplication table. To use
this table, find one of the numbers to
be multiplied in the left column, then
find the other one along the top row.
Go down the vertical column under
this latter number and across on the
horizontal row until the two lines inter-
sect. At this point is the product. Let
us take 9 X 7 as an example. Find 9
at the left side, and find 7 along the
top row. Move your finger down the
7 column until it is level with 9 on
the left. The number in the square is 63.

Let us see what we do if our multi-
plication involves large numbers,
rather than single ones. Suppose we
want to multiply 9437 by 7. The proper
method of doing this is shown below:

9437
X 7
66,059

Note that we multiply the large
number by the small number. It is
important to remember that it is near-
ly always much easier and quicker to
multiply the larger number by the
smaller because then we have fewer
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I 1| 2| 3| 4| 5 .8 9 | 10

1 1| 2 3| 4| 5 8 | 9] 10
2 2 | 4 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20
3 3| 6| 9| 12| 15 | 18 | 21 | 24 | 27 | 30
4| 4| 8| 12| 16 | 20 | 24 | 28 | 32 | 36 | 40
5 5| 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50
6 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60
7 7| 14 | 21| 28 | 35 | 42 | 49 | 56 | 63 | 70
8 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80
D| 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90
10 | 10 20 | 30 40 | 50 | 60 [ 70 | 80 | 90 | 100

Table 1

operations to perform and shorter col-
umns of figures to add.

Let us consider this problem in mul-
tiplication as we do it. The operation
is performed like this:

324

9437
7
66,059

Multiply the lower number (7), and
the digit farthest to the right in the
upper number, This is 7 times 7, which
1s 49.

Put down the 9 directly under the
right-hand column, carry the 4 to the
next column, and write that above the
3 so that you can remember it. Now
say 7 X 3 = 21, add in the 4 you car-
ried over, and you have 25. Put down
the 5, and carry the 2 to the next col-
umn. Then say 7 X 4 = 28, plus the
2 carried forward, equals 30. So you
set down 0 in that column and carry 3,
which you write above the 9. 7 X 9
— 63, plus the 3 carried forward,
makes 66. Write 66 down under the 9,
and you have the complete product,
which is 66,059.

Another way of performing this op-
eration would have been to break the
number down into thousands, hun-
dreds, tens, and units. For example:
The number 9437 is the same as 9000,
plus 400, plus 30, plus 7. If we multiply
each of these by 7 and add the prod-
ucts, we get 66,059. This is proved in
the following operation:

7 X 9000 = 63,000
7 X 400 = 2,800
7X3 = 210
7 X7 = 49
7 X 9437 66,059

This shows us that if we multiply
the sum of several numbers by any
given number, the product is equal to
the sum of the products of each of the
multiplicands and the multiplier.

Sometimes in radio and television
mathematics the number to be multi-
plied is the difference between two
numbers. Suppose we have the problem
6 X (30 — 7). This is equivalent to
6 X 23, since 30 — 7 = 23. The prod-
uct is 138.

Another way of doing this is to say
6 X (30 —7) = (6 X 30) — (6 X 7)
= 180 — 42 = 138.

Parentheses: In the preceding ex-
ample we showed some numbers in-
side parentheses (). We use these in
mathematics to separate groups of
numbers that are to be handled sepa-
rately. We simplify mathematical ex-
pressions by working out the contents
of the parentheses first, for example:

2(6X13) — 12 4 3(104-4) —7(5—1)
=2(78) — 12 4 3(14) —7(4)
=156 — 12 - 42 — 28

=144 |- 14

= 158

Note that a number immediately in
front of parentheses merely means to
multiply what is inside the parentheses
by that number.

Many operations in multiplication
can be performed very simply, such
as the one shown earlier, in which we
multiplied 9437 by 7. However, most
problems involve numbers with sev-
eral places (figures) in both the mul-
tiplier and the multiplicand. For ex-
ample, to multiply 8468 by 241, we
would set up the problem as follows:

8468
X 241
8468
33872
16936
2040788

In working a problem of this type,
multiply the upper number first by the
number farthest to the right (1 in this
case), then by the next number to the
left (4), and so on, moving to the left
each time. Each time we multiply by
one of these figures we write the prod-
uct below and one place to the left, be-
cause when we multiply by the 1, we
are multiplying by the units column.
When we multiply by the 4, although
we call it 4, we really multiply by 40,
since in the number 241, the 4 is in the
tens column and thus represents 40.
In the same way when we multiply by
the 2 we are really multiplying by 200
since the number 241 breaks down into
200, 40, and 1:

200
40
1

241

When we add the products from the
three multiplying operations, we have
the solution to the complete problem.

It doesn’t matter how many figures
there are in the multiplier or the multi-
plicand; it is usually easier to choose
the smaller number to be the multi-
plier. Then, setting the multiplier be-
low the multiplicand, we multiply by



each figure in turn, starting with the
one on the right, and offsetting the
product one place to the left each time
we multiply by a new figure.

Shown below is another example—
in this case the multiplier and the
multiplicand each has four places. Be-
cause each has the same number of
places, we multiplied by the easier
number. (The lower number has a 1,
a 2, and a 5 in it, all of which are easy
to multiply by.)

3947
5126
23682
7894
3947
19735
20232322

The following problems will give
you some practice in four-figure multi-
plication.

4157 9208 7564
2631 6452 3158

The correct answers are on page 37.

Squaring Numbers. Many times
in radio and television work, and in
many other simple calculations, you
will come across a term similar to the
following: 42

The little 2 is known as an indez
figure, and it means that the figure 4
is multiplied by itself. In the example
shown we read the expression as “four
squared.” This equals 4 multiplied by
4, which equals 16.

For example 10?2 means 10 squared,
or 10 multiplied by 10, which equals
100. The little figure 2 showing that
a number is squared is known as an
index or power. Another way of say-
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ing four squared is to say 4 raised to
the power of 2, or to the second power.
However, this is a rather technical ex-
pression and you need not bother to
remember it.

Sometimes you will see (4)2. This is
the same thing as 42 and is another
way of writing it. Sometimes you will
see an expression in parentheses, for
instance, (12—5)2. In this case, by
looking at the brackets and the squar-
ing sign we know that the difference
between 12 and 5 has to be squared.
So we say 12 minus 5 equals 7, and 7?
is 7 X 7, which equals 49. :

Squaring is an important part of
mathematics, but as long as you re-
member that the little figure 2 to the
upper right hand side of a number
means multiply by itself you should
have no trouble.

One of the most important things to
remember about squaring a number,
and one which sometimes confuses the
beginner is that squaring a number is
not the same thing as multiplying that
number by 2. For example, 4? equals
4 times 4, equals 16. But, 4 multiplied
by 2, equals 8.

Cubing Numbers. Sometimes you
may find a problem in which you have
a number and a little 3 written beside
and above it, such as 43 This is read
as “4 cubed.” It means 4 times 4 times
4, which equals 64. In other words we
have raised 4 to the power of 3.

It is interesting to note that although
a number that is squared, does not
necessarily become a very large num-
ber, as soon as it is cubed the differ-
ence really becomes noticeable.

For example: 4% equals 4 times 4,
equals 16.

4% equals 4 times 4 times 4, equals
64.

We have discussed squaring and
cubing, since, as you will find later in
this book, we are often very much con-

cerned with squares and cubes of fig-
ures, as well as square roots. We shall
not discuss square roots until we have
covered division in the next section.
Then we shall discuss what is meant
by “a square root” and see how it ties
in with “squared numbers.”

Before we leave the subject of mul-
tiplication, let us go over two very im-
portant points that can help you work
out these problems much more quickly.
The first is quite obvious, but it is
amazing how many people are fooled
by it every day. Whenever any number
is multiplied by 0, the product is al-
ways 0. Thus, 1000 multiplied by 0,
or 0 multiplied by 1000 equals 0. If
you remember that nothing times
something must be nothing, you will
be able to follow this reasoning quite
easily.

The second very important rule is
that when anything is multiplied by 1,
the product is always the same as the
other term. For example 200 multiplied
by 1 equals 200 or, putting it another
way, 1 multiplied by 200 equals 200.

You may say, “surely these points
are obvious,” but we are emphasizing
them, because, in spite of their ap-
parent obviousness, even the most ex-
pert mathematicians can sometimes
become confused when using them in
practical work in a long multiplica-
tion. ‘

Occasionally we get a long multipli-
cation operation to perform, such as
the following: 394f2L. This expression
can be re-written as 394 X 2 X L,

We need not worry at this point
about what the formula stands for. In
this case f equals frequency in cycles
per second, and L equals inductance
in henries. If the frequency is 120
cycles, and the inductance is 30 hen-
ries, we can rewrite the expression as
follows: 394 X (120)2 X 30 which
equals 394 X 14400 X 30.

Since most of us like to do the easiest
things first, it is usual to do the squar-
ing operation first. In this case we set
the problem out as follows:

120

X 120

2 400
120

14 400

X 30

432 000

X 394

1728 000

38 880 00

129 600 0

170,208,000

Notice that when the multiplier con-
tains a zero, instead of writing a whole
row of zeros, we put down one zero
in the proper column below, and then
put the product of the next figure and
the multiplicand directly beside it.
When we do this, we must remember
to put the next row over two places
to the left. For example, instead of
writing:

120 120
X120 X120
000 72400
240 we write: 120
120 14400
14400
DIVISION

Division is to multiplication what
subtraction is to addition. In other
words when we add numbers we get a
larger number, and when we multiply
we also normally get a larger number.
When we subtract one number from
another the result is also usually a
smaller number.

We use division when we want to
find out how many times a certain
number is contained in another num-
ber. This is another way of saying



how many times we have to multiply
a number to obtain a given number.
Instead of using the rather cumber-
some expression “is contained in a
given number” we usually say “a num-
ber goes into another number” a cer-
tain number of times.

For example, 3 X 9 equals 27, or
3 “goes into” 27 nine times, and 9
“goes into” 27 three times. In other
words we can subtract 9 from 27 three
times.

The sign for division is =-. The
problem can also be set down as a frac-

tion, 27 =+ 3 is the same as 231 Both

expressions mean exactly the same
thing. The number above the line is
called the dividend because it is being
divided, the number below the line is
called the divisor, that is, the number
that is doing the division, and the an-
swer is called the quotient. Thus, in
the example just given, 27 is the divi-
dend, 3 is the divisor, and 9 is the
quotient.

A brief reference to Table 1 at this
point will do two things—it will refresh
your mind on the division of single
numbers, and it will show you why
division may be considered as being
the opposite of multiplication. Instead
of locating our multiplier and multi-
plicand on the top and the left-side
of the table respectively, and reading
the product at the point where the two
columns intersect, locate the divisor in
the left-hand column, and the divi-
dend in the body of the table, then
read the quotient at the top.

There are two methods of working
division, the “short” method and the
“long” method. When the divisor is
a number smaller than 10, we use
“short division” as shown below.

41563
9)374067
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10

Our mental process in performing
this operation is something like this:
3 is not divisible by 9, so we combine
it with the next number (7) to make
37. 9 goes into 37 four times; 4 X 9
is 36, so there is a remainder of 1.
4 is written above the 7 of the 37 and
the 1 is carried over as a 10 and added
to the next number (4). This gives 14.
9 goes into 14 once, so 1 is written
above the 4. 9 from 14 leaves 5 and
this is carried forward as 50. Combined
with the next number (0) it thus be-
comes 50. 9 goes into 50 five times
(9 X 5 = 45) so we write 5 above
the zero and subtract 45 from 50 leav-
ing 5. This 5 is carried forward as 50
and added to the 6, making 56. 9 goes
into 56 six times (6 X 9 = 54) and we
write 6 above the 6 and carry the 2
remaining to the next figure calling
it 20. Carrying this to the next figure,
we get 27. 9 goes into 27 three times
so we write the 3 above the 27. Since
9 W 3 = 27, there is nothing left over.

Therefore our answer is 41563. We
can check this by multiplying 41563 by
9. If we have performed the operation
properly, we obtain the result, 374067.
So we say the quotient is 41,563.

Long Division. If the divisor is
larger than 10, we use long division.
The following example, in which 31
is the divisor and 969,424 the dividend,
illustrates the method.
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In actuality we perform the same
process as in short division, but because
of the size of the numbers used, we
set down the individual processes. The
operation is performed as follows: 31
goes into 96 three times. We put 3
above the line and 93 (31 multiplied
by 3) under the 96. Now subtracting
93 from 96 leaves 3. We “bring down”
the next figure in the dividend, which
is 9. This makes our next sub-dividend
39. 31 goes into 39 once, so we write
down 1 above the 9. Subtracting 31
from 39 leaves 8. We bring down the
next figure, 4, making a sub-dividend
of 84. Now 31 goes into 84 twice, so we
put 2 above the 4 and subtract twice
31, or 62, from 84, which leaves 22.
We bring down the 2 making a sub-
dividend of 222, and find that 31 goes
into 222 seven times. Therefore we
write 7 above the 2, and subtract 217
(7 times 31) from 222 which leaves 5.
We bring down the 4 making 54. 31
goes into 54 once, we write one above
the 4 and our quotient is 31271.

In the short division example, the

answer came out exactly even. How-

ever, if the last sub-dividend is not ca-
pable of being divided exactly by the
divisor, we have a number left over.
There are no more figures to bring
down from the main dividend, so we
have a fraction or a decimal figure left
over.

In the long division example above,
our quotient came to 31271, and 23 was
left over. If we had reached the stage
of being able to handle decimals, we
could have continued division and ob-
tained a decimal figure in our answer.
However we have not yet tackled
decimals in this reference text al-
though we are going to very shortly.
Therefore, we write the quotient thus:

31271 %, in other words 23 of the
original dividend is left over.

11

When we get to decimals we will
finish this example and give the an-
swer as a decimal. .

The quotient of any number divided
by 1 is always the same as that num-
ber. We can check this by applying the
rule—divisor multiplied by quotient
equals dividend.

Another way of reducing the size of
large numbers before division is possi-
ble if the divisor and the dividend each
end in 0. If this is the case, we can
cross off the zeros in the ending of these
two numbers and divide by what is
left. This often saves time.
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Here are some problems in division
for you to try, if you like:

e
(=]

36)1944 23)17043

You can check your answers on
page 37.

Finding Square Roots. A few
pages back we discussed squaring num-
bers and we mentioned square roots.

At that time we learned that the
process of “squaring” really means
multiplying one number by itself.
Therefore, if we write down 122 we
know that it means 12 multiplied by
12, which equals 144,



The converse, or opposite, of squar-
ing a number is finding its square root.
The square root of a quantity is that
number which when multiplied by it-
self produces the given number. For
example, the square root of 144 is 12,
since 12 multiplied by 12 equals 144.
Similarly the square root of 9 equals 3,
because 3 X 3 = 9.

The square roots of simple terms
such as these can be found by inspec-
tion, or very rapidly by mental arith-
metic, by squaring numbers on & trial
and error basis to see if they produce
the required number. However, it is
obvious that on many occasions we
need to know the square roots of num-
bers running into more than two digits.
In cases like this we have to use a defi-
nite system for finding, or “extract-
ing” as it is sometimes called, the
square root.

We have a symbol for indicating
that a number is to be squared—as
we showed a few paragraphs back. We
also have a special sign to show that
a square root is to be found. It is known
as the “radical sign” and is a quick
way of writing “the square root of.”
In the expression below, the sign means
“find the square root of 25.”

V2%

This is, of course, 5 (because 5 X 5
= 25).

Whenever you see this symbol
\/ it means that you are to find
the square root of a number.

Here is an example of finding the
square root of a number.

V 2304

The first thing to do in finding the
square root of a number is to separate
the number into groups of two figures
(each of these groups is called a “pe-
riod”), starting at the right, thus:
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23'04

We now find the largest square
(number multiplied by itself) con-
tained in the first, or left-hand group.
In this case, it is 16 (4 X 4). Place
this figure under the first group and
put its square root (4) as the first figure
of the answer above the 3 of the num-
ber 23 as shown below.

4 8
\/ 23 04

16
80 [7 04
88 | 7 04

As in long division, we subtract the
16 from the 23, which leaves 7. We
then bring down the next pair of digits
instead of the next one as we would
in long division.

Now we come to the part which is
sometimes confusing in trying to find
a root. We must find a “trial divisor”
to use with a new dividend (704 in this
case). We find this trial divisor by
multiplying the number we have al-
ready obtained in the answer by 2 and
then by 10. (We could have multiplied
it by 20 and obtained the same re-
sults.) Thus, since 4 is the number in
the answer, we double it, giving us 8,
which when multiplied by 10, gives
us 80 which we write to the left of the
704. We now try to determine how
many times 80 will go into 704. By in-
spection, it appears to go 8 times.
Therefore we put the number 8 in the
answer position to the right of the 4
and add this number to the 80, giving
us 88, which we write below the “trial
divisor.” We multiply 88 by 8 (which
we have in the answer) and find that
it comes out to exactly 704. Therefore,
the square root of 2304 is 48, so in
other words, 48 multiplied by 48 equals
2304.

"This probably seems a little confus-

ing, so we will work another example.
Find the square root of 14641, which

would be written \/ 14641, Now we
break the number into groups of two,
starting from the extreme right hand-
side; so we get 1146141,

The largest square in the extreme
left-hand number is of course 1, since
1 X 1 equals 1. Therefore we write 1
in the quotient, and place 1 under-
neath the 1 in the dividend. Subtract-
ing leaves 0, so we bring down the 46.
Remember that 1 is the first figure in
our quotient (answer). Doubling this
figure we get 2 (twice one) and mul-
tiplying by 10 we obtain 20 for a trial
divisor. Dividing 20 into 46 we find
that it goes twice, so we write the figure
2 in the quotient, er answer. We now
add 2 to 20 and obtain 22, When we
multiply 22 by 2 this gives us 44 which
we subtract from 46. Since 44 from 46
leaves 2, we write down the 2 and
bring down the next pair of figures,
which is 41, and thus obtain 241.

1 2 1
Vv 146 41
1
20 | 0 46
22 44
240 2 41
241 24

Now we go through the second step
again. This time we double 12, since

that is the answer thus far obtained.
Twice 12 equals 24, multiplying by 10
gives us 240. We write this down to
the left of the number 241. We divide
240 into 241 and find that it goes once.
Therefore we write 1 in the answer,
then add 1 to 240 and cbtain 241, We
write this down on the left-hand side
and also on the right-hand side under
the first 241 and by subtraction we find
there is no remainder, Thus we have
found, because there is no remainder,
that the square root of 14,641 is 121.
We can check this by squaring 121.

121

x 121

121
242
121

14641

Here is a simple example for you to
try. Find the square root of 4096.

Vo

2
’ o

3t

You can check your answer on
page 37.
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Fractions

A fraction is a part of a whole. When
we divide, we get a fraction. For ex-
ample when we divide 1 by 2 we can
write 1 = 2 or 4. In a fraction, the
number above the line, the numerator,
is divided by the number below the
line, the denominator. If the numerator
and the denominator are the same, the
fraction is equal to 1. For example
writing 4/4 is the same as writing
4 — 4, which equals 1. Therefore you
see that 2/2, 3/3, 4/4, 5/5, etc. are
equal to 1.

The same value can be expressed in
many different ways. Let us suppose
you had something which you divided
into 4 parts. If you took two of these
parts you would have half the original
quantity. So you see 2/4 is also equal
to a half. Similarly, if you divided the
original quantity into 6 parts and took
3 of them, you would have half the
original quantity. Therefore, you see
that 2/4, 3/6, 4/8, 5/10, etc. are all
equal to 1/2. This illustrates the rule
that if the numerator of a fraction and
the denominator are each multiplied
by the same number, the form but not
the value of the fraction will be
changed.

If we start with the fraction 1/2,
we can multiply the numerator by 2
and get 2, and the denominator by 2
and get 4, so we have 2/4. Similarly
if we multiply each by 3, we get 3/6,
if we multiply each by 4, we get 4/8,
ete. and each of these is still equal to
the original fraction, 1/2.

Conversely if we divide the numera-
tor and the denominator each by the
same number, the form but not the
value of the fraction will be changed.
For example, if we have 4/8 and we
divide the numerator and the denomi-
nator each by 4, we get 1/2. If we have

14
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3/6 and divide each by 3, we get 1/2,
if we have 2/4 and divide each part
by 2, we get 1/2. We say that 1/2 has
been reduced to its lowest possible
form, because the only number that
will go evenly (without a remainder)
into the numerator and into the de-
nominator is 1.

To reduce a fraction to its lowest
possible form, divide the numerator
and the denominator each by the
largest number that will go into each
a whole number of times. For example,

if you have the fraction %g—, you can

divide both 36 and 48 by 3, by 4, by 6,
or by 12. You choose the largest, 12,
and dividing 36 by 12 gives you 3, and
dividing 48 by 12 gives you 4, so
when %is reduced to its lowest pos-
sible form it is 3/4.

A fraction in which the numerator
is greater than the denominator is
called an “improper fraction,” and is
greater than 1, To reduce an improper
fraction to its lowest form, divide the
numerator by the denominator, and
express the remainder in its lowest pos-
sible form. For example, if you have

the fraction 19—2, to express it in its

lowest possible form, divide 12 by 9,
and this will give 1 with 3 left over;
3/9 can be expressed as 1/3, so you
have 1 1/3. Here are some examples.

7
3—12/5

6
Z=11/2

z_,

3

ADDING FRACTIONS

We can add, subtract, multiply, or
divide fractions. Before we can add
fractions, all terms must be expressed
with the same denominator. Suppose
we want to add 5/6 and 1/2. We must
have a common denominator, so we
change 1/2 to 3/6 and add the nu-
merators. We get 8/6, which when re-
duced equals 1 2/6 or 1 1/3.

To find a common denominator, we
must find a number into which all the
denominators in the problem will go
an even number of times. If we wanted
to add 5/6, 3/4, and 2/3 we could use
12 as the common denominator, be-
cause 6, 4, and 3 will all go into 12 an
even number of times. Now we must
change the form of each fraction so
that each one is expressed in twelfths.
To change the form of a fraction, we
multiply the numerator and the de-
nominator each by the same number.
This is the same as multiplying by 1,
because you would be multiplying by
2/2, 3/3, 4/4, etc., which are each
equal to 1.

To change 5/6 to twelfths, we must
multiply each part by 2, so we have
}—g. To change 3/4 to twelfths we
must multiply each part by 3, so we

have ?—n . To change 2/3 to twelfths,

we must. multiply each part by 4, so
8

we have TR

Now we add the numerators, and
we have 10 4 9 4 8 = 27. This is
the numerator of the answer. The de-
nominator of the answer is the same
as the common denominator used in

the problem. So we have %;— Reduc-

. 3
ing this we have 2 12 or 2 1/4.

Here are some more examples:

1. Add 1/2, 3/4, and 7/8
1/2 = 4/8
3/4 = 6/8
7/8 = 1/8
17
g = 21/8
2. Add 2/5, 2/3, and 1/2
2/6 = 12/30
2/3 = 20/30
1/2 = 15/30
47
3 — 117730
To add mixed numbers, that is,
numbers in which there is a whole num-
ber plus a fraction, add the fractions
and the whole numbers separately.
5 3/4
72/4
8 1/4
20 6/4
6/4 = 11/2 so you have 20 41 1/2
or 21 1/2 for the answer.

SUBTRACTING FRACTIONS

In subtracting fractions just as in
adding them, we must have a common
denominator. To subtract fractions,
find a common denominator, change
each fraction to the form using this
denominator, and subtract the numera-
tors. Again the answer will have the
common denominator. Here are some
examples.

1. Subtract 1/3 from 5/9

5/9 = 5/9
1/3 = 3/9
2/9
2. Subtract 5/13 from 7/15

7/15 = 91
195

5/13 = 75
195

16

195

16



Just as in addition, when mixed
numbers are subtracted, subtract the
fractions and the whole numbers sepa-
rately.

33 7/8
11 5/8
22 2/8 = 22 1/4

MULTIPLYING FRACTIONS

To multiply fractions, multiply the
numerators and the denominators (you
do not need a common denominator
as in addition and subtraction). For
example:

3/4 X 2/3 =6/12 = 1/2

Here is a short cut that can be used.
If one of the numerators and one of
the denominators are divisible by the
same number, you can divide them
by the number thus giving smaller
figures to multiply. For example:

5/12 X 3/10

We can see that the first numerator
5, and the second denominator, 10, are
both divisible by 5 so we divide both
by 5 which gives us 1/12 X 3/2. We
can also see that 3 and 12 are both
divisible by 3. Dividing each by 3 gives
us 1/4 X 1/2, which gives us 1/8. If
we had multiplied the problem as it
originally stands, we would have had
15/120, dividing the numerator and
the denominator each by 15 would give
1/8, so you see we would get the same
answer either way.

Here are some examples of multipli-
zation:

42
3/5 X 1/8 X 2/3 = 100 — 7/20

3/7 X 4/5 = 12/35

When you want to multiply mixed
numbers, you must first convert them
to improper fractions. To do this, mul-
tiply the denominator by the whole
number and add the numerator. This
figure will be the new numerator of
your fraction, and the denominator
will be the same. For example:

73/4 X12/3

First convert both numbers to im-
proper fractions:

31/4 X 5/3 = 155/12 = 12 11/12

DIVIDING FRACTIONS

Once you have learned to multiply
fractions, dividing them is very easy
There is only one rule to remember:

To divide by a fraction, invert it
and multiply. In other words put the
denominator where the numerator was,
and the numerator where the denomi-
nator was. For example:

1. 3/4 =~ 2/3
—3/4 X 3/2 == 9/8 = 11/8
2. 5/8 =~ 4/9

=5/8 X 9/4 = 45/32 = 113/32

To divide mixed numbers, first
change them to improper fractions, in-
vert the divisor, and proceed as in
multiplication.

71/3 ~21/2
22/3 + 5/2
22/3 X 2/5 — 44/15 = 2 14/15

Decimals

In the introduction, we mentioned
decimals. At that time we mentioned
decimals very briefly in connection
with everyday living, and promised to
return to the topic later in the book.
We are now ready to kill that dragon
and show that decimals are really very
simple and we are much more familiar
with them than we often realize.

We will start off by defining the
decimal system. It is merely a means
of expressing numbers smaller than 1,
in terms of tenths. If you want to write
the number one-tenth, you would write

it like this: % If you want to write

one-half, you write —;—.

When dealing with capacity of con-

densers, we very frequently work with

5
values such as 10,000 °
awkward figure. As a matter of fact,
5 over 10,000 is actually the same thing
as writing .0005. In your radio and
television work you will use many con-
densers with a capacity of .0005 mfd;
what you are actually using is five ten-
thousandths of a microfarad.

We know that 14-megohm resistance
is the same as 500,000 ohms. This is
usually written as .5 megohm, since .5
is another way of writing half.

Now let’s see why this is so. We all
know that there are 100 cents in a dol-
lar. We also know that if we multiply
one dollar by 10 we have 10 dollars,
or 1000 cents. If we have 950 cents, it
is much easier for us to write down
the dollar sign, and then 9.50 because
the term is much smaller and more
convenient. We know that fifty cents
equals a half dollar, so when we say
fifty cents we are really saying
50/100ths of a dollar. Reducing

This is a rather

50/100, gives us 5/10 which reduces
still further to 1/2.

In the same way twenty-five cents
equals 25/100, or in other words a
quarter of a dollar. We could also
write seventy-five cents as 75¢, or
75/100, or 3/4.

If we wanted to write fifty cents we
would put .50 which of course is also
1/2. In a number, the decimal point
means that whatever is on the right
hand side of it is less than 1.

Here is an example in adding money.
I am sure you have plenty of practice
in doing this, but we will just go over
it as a starting point for what is to
come,

$2.50
5.93
1.17
0.03

| $9.63

You see that the total of our addition
is $9.63.

Now let’s go back and see how we
arrive at this figure. Starting from the
right-hand side, we add 3,7,3,0, which
gives us 13. Writing down 3 under the
column, we carry 1 forward to the next
column. We added 1,5,9,1, which gave
us 16 so we write down the 6 and carry
the 1 over to the dollars column. Add-
ing this column we get 9. We put a
decimal point directly below the deci-
mal points in the problem, and our an-
swer is 9.63. You can see that this is
right, because if you add the amount
as 250 cents, 593 cents, etc., you would
get 963 cents, which you know is the
same as $9.63. Another way of writing
this would be $9 63/100. As you can
see it is much more simple to write
$9.63 than $9 63/100.

16 17
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Here is an example adding small
numbers:

$0.05
0.17
0.71

$0.93

Adding these small amounts, gives us
93 cents. We could of course write this
$93/100, but that is clumsy, so we write
$0.93.

Engineers almost invariably put a
0 in front of the decimal point when
they are writing a number less than 1.
This is to prevent any confusion aris-
ing because of the blank space to the
left of the decimal point. In the ex-
ample just given, as soon as we see

we are accustomed to thinking of
condensers in terms of fractions of
microfarads. As soon as we see a .0005-
mfd condenser we know that it would
not be a 1.0005-mfd condenser because
the difference is too great. If we in-
dicated a .5 condenser we know that
we are not very likely to get a 1.5 con-
denser. Even so, it is not unusual to
see a .5 condenser described as a 0.5
mfd.

In radio and television we deal with
decimals to many places, such as .0008,
0025, ete. Table II below shows you
how these are read and includes the
fractional equivalents.

As a short cut, when reading deci-
mals with a large number of places,
such as .0008, instead of reading eight

1 = 1/10 -
01 — 17100 -
001 = 171000 =
0001 = 1/10,000 =
00001 = 1/100,000 =—
000001 = 171,000,000 —

TABLE II

one-tenth
one-hundredth
one-thousandth
one-ten-thousandth
one-hundred-thousandth
one-millionth

0.93 we know that there cannot possi-
bly be any figure on the left of the
decimal point. However if we just saw
.93, that is, decimal point 93, it is quite
possible for a mark to get on the left
of the decimal point and thus acci-
dentally change the value of that num-
ber completely. So, instead of reading
93 it might be interpreted as 1.93 or
some other value. Also another impor-
tant reason for putting a 0 in front is
to show that whoever wrote down the
number had not carelessly omitted a
number.

However, in radio and television, by
common usage, it has become the ex-
ception rather than the rule to write
down a 0 to the left of the decimal
point when discussing condensers. The
main reason for this is the fact that
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ten-thousandths, we often read “point
0-0-0 eight,” “three zeros eight,” or
even “triple-0-eight.” Sometimes deci-
mals of one place are read in this
way. Thus .5 may be read “point five,”
or “one-half” instead of “five-tenths.”
If you should hear someone say that
a certain quantity is “5 zeros three,”
you will know that he means “three-
millionths,” or .000003. If you hear
“double 0 two five,” you will immedi-
ately see in your mind .0025 which you
know to be 25 ten-thousandths.
Here is a simple sum, adding deci-
mals and following the same principles
that we learned in adding dollars and
cents. You will remember that when
we add dollars and cents together we
keep the decimal points one under the
other in a vertical line. We do exactly

the same thing when we are adding
other numbers, even though some of
these numbers may have four or five
digits on the right-hand side of the
decimal point. For example:

1.008
.0005
121.0
31.1
14.05

167.1585

Naturally the decimal point in the an-
swer will be directly below the decimal
points in the numbers added. You will
see this time however that we have four
places on the right hand side of the
decimal point. Another way of show-
ing this answer would be like this:

1585
10,000

We would say this as 165 and 1585
ten-thousandths. You can see how
clumsy this is, and how much simpler
it is to say 167 point 1585. As a mat-
ter of fact some people call it “167
decimal 1585.”

When we subtract decimals, we han-
dle them in exactly the same way as
we do subtraction of money.

The only difference between han-
dling decimals and handling plain
numbers is that we have to be sure to
put the decimal points one under the
other in the columns. Once the decimal
points have been lined up, one under
the other, we forget about them, and
proceed just as though they were not
there. For example:

1405.03972
— 907.10007

497.93965

We needn’t go through the mechanics
of subtraction here but we will just
take a look at how we performed sub-
traction of the decimal part. We

167
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started at the extreme right, just as for
whole numbers and subtracted in the
same way. When we came to the deci-
mal point, we “borrowed 1” from the
number on the left-hand side of the
decimal point. Because we added it to
the place immediately to the right of
the decimal point it becomes 10/10th.
So now subtracting 1 from 10/10ths,
leaves 9/10ths which we can write as
.9 then we continue across on the other
side of the decimal point as in ordi-
nary subtraction. Qur answer becomes
497.93965. Actually, we don’t need to
worry about the decimal point until
we have subtracted all the way across;
then, we simply put it in the answer
directly under the ones in the problem.

Here is another example in which
we are dealing with two very small
numbers:

2.000083
— 0.001094

1.998989

You can, of course, check the accuracy
of your subtraction by adding the an-
swer to the number you are subtract-
ing.

0.001094
+ 1.998989

2.000083

We could have handled these num-
bers as fractions, but think what a
horribly unwieldy problem you would
have to do, and how much chance of
error there would be if you converted
these two numbers to fractions!

One very important point to remem-
ber when handling decimals is that the
zeros in the last place to the right in a
decimal number have no significance
of any kind (a decimal number is the
portion of a number to the right of
the decimal point). Any number of
zeros can be added to the right without
changing the value in the slightest.



Thus .05 is exactly the same as .0500
or .05000000; and 27.903 is exactly the
same as 27.9030000.

However, every time you add a zero
between the decimal point and the
number on its right you decrease its
value ten times. For example: .3 equals
3/10ths, but .03 equals 3/100ths and
.003 equals 3/1000ths. From this you
can see that it is extremely important
that the decimal point be handled with
great care.

Students who are taking communi-
cations course work and intend to ob-
tain a radio operator’s license will find
that some FCC license questions re-
quire mathematical answers.

In the following examples on mul-
tiplication and division we are going to
give you some special rules regarding
the handling of decimal points. Be-
cause the FCC questions are multiple-
choice types, these mathematical an-
swer questions are usually designed to
test an applicant’s knowledge of arith-
metic as well as his technical knowl-
edge, and they consist of four or five
numbers, which are identical except for
the position of the decimal point. You,
the student, have to decide which of
the various answers has the decimal
point in the right place. We shall re-
turn to this after we have discussed
multiplication and division of deci-

mals.
MULTIPLYING DECIMALS

To multiply two numbers contain-
ing decimals, we follow exactly the
same procedure as for ordinary num-
bers. That is, we multiply one num-
ber by the other, completely ignoring
the position of the decimal point dur-
ing the time that we are performing
the multiplication.

Suppose we wanted to multiply
8.468 by 24.1. Multiplying this, we get
the following figures:
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8.468
X 24.1
8468
33872
16936
2040788

Now the question is: where do we
put the decimal point in the answer?
All we do is count the number of deci-
mal places in both the multiplier and
the multiplicand. Decimal places are
the places occupied by figures to the
right of the decimal point. The num-
ber 8.468 has three decimal places be-
cause there are 3 figures to the right
of the decimal point. Similarly 24.1
has one decimal place—one figure on
the right of the decimal point. We have
a total of four decimal places (3 4 1).
This means that we put the decimal
point four places from the right in the
answer. The final result is not 2040788,
but 204.0788.

Remember the simple rule: Add the
number of decimal places in the mul-
tiplier and the multiplicand. Count
from the extreme right hand figure in
the answer and position the decimal
point the required number of places
to the left.

Multiplication Rules. To multiply
by 10, move the decimal point ONE
place to the RIGHT. Remember that
zeros to the right of the decimal num-
ber should be dropped because they
have no significance.

10X 7=70=17
10 X 01 = .10 = .1
10 X .0035 = .0350 = .035

To multiply by 100, move the deci-
mal point TWO places to the RIGHT.

100 X .01 = 1.00 = 1
100 X 15.798 = 1579.8

To multiply by 1000, move the deci-
mal point THREE places to the
RIGHT.

1000 X .01 = 10.00 = 10
1000 X 1.75 = 1750

To multiply by 1,000,000, move the
decimal point SIX places to the
RIGHT.

1,000,000 X .000250 = 250

Here are the two rules for decimal
multiplication, and two examples.

Dectmal numbers are multiplied in
the same way that ordinary numbers
are multiplied in simple arithmetic.
The number of decimal places in the
answer is the SUM of the decimal
places in the two numbers being mul-
tiplied together.

EXAMPLE: Multiply .0025 by 43

0025 4 decimal places
43 0 decimal places

75 Total is 4 decimal places,
100 therefore the answer is
1075 1075

EXAMPLE: Multiply .025 by .0043
025 3 decimal places

0043 4 decimal places
75 'Total is 7 decimal places,
100 therefore the answer is
1075 0001075

If you are moving a decimal point
more places over than there are digits
in the answer, fill in the places with
Z€eros.

DIVIDING DECIMALS

Let’s go back for a moment and
consider the problem we did in the sec-
tion on long division.

Remember that when we performed
this without going into decimals, we
got an answer of 31, 271 %—?— At that
time we didn't know what to do with
the 23/31 to avoid having a fraction
in the answer, Now we can carry out
the division beyond the decimal point
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and automatically convert the answer
to decimals.

ete.

Look at the division operation shown
above the dotted line A. Here we have
the problem of dividing 23 by 31, which
we cannot do. We have no more num-
bers to bring down, therefore we know
that we shall have to use decimals to
obtain an answer that does not con-
tain fractions. To do this we place a
decimal point in the dividend to the
right of the last number, and one di-
rectly above it in the quotient. Now
we can add zeros beyond the decimal
point and continue to divide, until we
are satisfied with the number of deci-
mal places we have obtained or until
the problem comes out even. In this
case we placed a decimal point immedi-
ately after the one in the quotient and
brought down a zero, making 230 in-
stead of 23.

Continuing in long division, we see
that 31 goes into 230 seven times. Seven
times 31 is 217, so we subtract 217
from 230, leaving 13. Since we have a
remainder and we want to continue
our division, we add another zero,
making the 13 into 130. 31 goes into



130 four times, so we subtract 124
from 130, leaving 6.

At this point we will stop, although
we could go on indefinitely until we
had either completely solved the prob-
lem or decided (as we have here) that
we had enough decimal places in the
answer,

Where the dividend but not the di-
visor contains a decimal, the procedure
is the same as that just illustrated.
When dividing, place the decimal in
the quotient above the decimal in the
dividend. If the quotient is set down
carefully, there will be no difficulty in
placing the decimal point correctly.

If the divisor contains a decimal, the
simplest procedure is to move the deci-
mal point enough places to the right
to make a whole number of it. Then
move the decimal point in the dividend
the same number of places to the right.
For example, suppose we have the
problem 974.63 — 1.3. We can write
this:

13.)9746.3 (97463 = 13)

A slightly more difficult problem
would be 1.41 = .0025. To make the
divisor a whole number, we have to
move the decimal four places to the
right—our problem becomes 14100
25, or ———1421{?0 . Here we have put zeros
in the empty spaces:

0025.)14100.

Note: The decimal point in the
quotient is placed above the new posi-
tion in the dividend,

On the other hand, suppose we have
to divide a whole number into a deci-
mal number, as for example:

.0007
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We would work this out as follows:

.0000155

45 ) .0007000
45
250
225

250

25

Notice that we set down in the quotient
the three zeros in the dividend. Then,
because 45 won’t go into 7, we set down
another zero. 45 goes into 70 once, so
we write down 1 in the quotient. 45
from 70 leaves 25. Bring down a zero
from the dividend, and divide 45 into
250. It goes 5 times, with 25 left over.
Bring down another zero and divide
45 into 250. It goes 5 times, so we set
the 5 down in the quotient. We could
continue adding zeros to the dividend,
but for most purposes we are satisfied
with three “significant figures.” Short-
ly we will explain what is meant by
“significant figures.”

In radio and television work we
often have to divide a whole number
into 1 to obtain the reciprocal. In this
case the procedure is exactly the same
as we showed you above. Suppose
you want to find the conductance

—Il‘——, where R is 2500 ohms. You do
this as follows:
0.0004
2500 ) 1.0000
1 0000

Notice that the quotient has as many
decimal places as the dividend. The
conductance in this case is 4 ten-
thousandths of a mho. To simplify our
division we could have gotten rid of
the 2 zeros in the division by moving
the decimal point two places to the
left, provided we also moved it two
places to the left in the dividend.

0004
25) .0100
100
As you can see, we would get the same
answer.
Division Rules. Here are some

rules to remember when dividing deci-
mal numbers:

To divide by 10, move the decimal
point ONE place to the LEFT.
.0035 < 10 = .00035

To divide by 100, move the decimal
point TWO places to the LEFT.
5 =100 = .005

To divide by 1000, move the decimal
point THREE places to the LEFT,
5.7 - 1000 = .0057

To divide by 1,000,000, move the
decimal point SIX places to the LEFT.
750,000 = 1,000,000 = .75

SHORT CUTS

Multiplication. Multiplying large
numbers can become a very tedious
operation. If one or both of the num-
bers contains several zeros, we can
apply a very simple short cut.

For example, 24,000 X 4,000 =
96,000,000. Multiply the numbers to-
gether, without the zeros, and add to
the answer as many zeros as there are
in both the multiplicand and the mul-
tiplier. In this problem we multiplied
24 X 4 = 96. There are three zeros
in each term of our example; there-
fore, there will be six zeros in the
product. '

In multiplication it doesn’t make
any difference which term we use as
the multiplier. However, it is nearly
always easier to use the smaller term.
For example, suppose we are to mul-
tiply 5134 and 2100. With 5134 as the

multiplier, our problem would be set up
thus:
2100
5134
8400
6300
2100
10500
10781400
Using 2100 as the multiplier would
be much simpler, as shown below:
5134
2100
513 4
10 268
10,781,400

Here we followed our rule about
numbers containing zeros, adding twc
zeros to the product of 5134 X 21

Short cuts can be used where a num-
ber is multiplied by V2 (.5), V4 (.25)
or 3 (.75).

To multiply by .5, divide by 2. This
is self-evident, since .5 is the same as
5/10, which is equal to 1/2. If the
number to be multiplied is 15, we see
that 15 X .5 is the same as 15 X 1/2,
which becomes 7.5.

To multiply a number by .05, move
the decimal point of the number one
place to the left, and divide by 2.
Suppose 5 per cent of a number is
required. Now 5 per cent is 5/100,
which becomes in decimals .05. If the
number is 15, move the decimal point
one place to the left, which gives 1.5,
and divide by 2, obtaining .75.

To multiply by .25, divide by 4.
If 264 is to be multiplied by .25, con-
siderable calculation would be neces-
sary to multiply it out. But by divid-
ing by 4, we quickly obtain the answer,
66.

We can use this method whether our
multiplier is 2.5, 25, 250, or 25 million,
simply by adding to the multiplicand
as many zeros as there are whole num-
bers in the multiplier. Multiplying by



2.5 we add one zero and divide by 4.
Multiplying by 25 we add 2 zeros and
divide by 4, ete.

To multiply by .75, divide by 4 and
multiply the result by 3. For example,
multiply the number 264 by .75. Ap-
plying the rule, we have 264 divided
by 4, equals 66, and multiplying by 3,
we get 198.

To multiply by 7.5, 75, 750, etc.
add zeros to the multiplicand exactly
as when multiplying by variations of
25.

Division. There are also many
short cuts that can be used to make
division easier. To divide by 25, move
the decimal point two places to the left,
and multiply by 4. Taking the num-
ber 2640, we move the decimal two
places to the left and obtain 26.40 X
4 = 105.6.

To divide by 250, move the decimal
3 places to the left and multiply by
4. To divide by 2500, move the decimal
4 places, ete.

In the same way, to divide by 50,
500, 5000, etc., move the decimal point
in the dividend to the left as many
places as there are whole numbers in
the divisor, then multiply by 2.

If you have to divide by decimal
numbers such as .5, multiply by 2 but
do not move the decimal point. Thus
33.7 divided by .5 can be performed
very quickly and simply by multiply-
ing 33.7 by 2. This equals 67.4.

If you have to divide by .05 you
can multiply by 20 and obtain your
answer very quickly. In the example
given in the last paragraph, 33.7 di-
vided by .05 is the same as 33.7 multi-
plied by 20. This equals 674.

Here is a typical question based on
Ohm’s Law: E = 100 volts, R = 1000
ohms, what is the current?

I = E; substituting, I = 100

R 1000
Answer (a) 1 ampere? (b) 1000 ma?
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(¢) 10 ma? (d) 100 ma? (e) 1 ma?
1.000 amp = 1000 ma
.1 amp = 100 ma
01 amp = 10 ma
001 amp == 1 ma

Which of these five answers is cor-
rect?

By very rapid inspection, you can
see that il—(%.- is the same as % 80
the correct answer is .1 amp or 100 ma.

What would the current be if the
voltage were 10 volts, 1000 volts,
1 volt?

CONVERSION UNITS

In radio and television, numbers
such as .0005 are very commonly used.
Many of the calculations that we make
involve the multiplication and division
of numbers of this order. At this point
if you said, “my goodness, how difficult
it is to handle long numbers with so
many zeros” you’d be quite right.

Therefore, radio and television engi-
neers have developed special small
units to use when working with very
small capacities so as to avoid the need
to multiply and divide by figures such
as .0005.

In this section we shall show how
some of these special small units sim-
plify arithmetic in dealing with such
numbers.

As you are no doubt aware, the
basic units used in electrical measure-
ments are volts, amperes, ohms, farads,
henries, and cycles. When considering
radio and television operation, these
units are often either too large for the
small values that we use, or, as in the
case of cycles and ohms, the numbers
used would be too large (for instance
a radio station which comes in at 880
on your dial actually has a frequency
of 880,000 cycles per second, but be-
cause this is such a large number we
divide by 1000 and call it 880 kilo-

cycles). In this section we are going
to tell you the very simple relationship
between the basic units and the frac-
tional ones that we use in our radio and
television calculations.

In a typical radio and television
problem we might have to divide 10
by 170,208,000. This is a pretty for-
midable looking problem isn’t it?

00.000000058

170,208,000 ) 10.000000000
8 51040000

1 489600000

1 361664000

127936000

You will notice that we had to add
9 zeros to the dividend. Therefore,
there will be nine places in the quo-
tient, and the answer reads 58 thou-
sand-millionths.

The particular problem given above
might represent the capacity worked
out in farads. As you know, the farad
is so large a unit of capacity that only
small fractions of it are ever used in
radio and television. Therefore, we
convert it to microfarads by multi-
plying by one million and our answer
becomes .058, a much easier number to
handle.

Technical men have developed a
code of their own to indicate thousands
and millions, and thousandths and
millionths. Actually this code has been
taken from ancient Roman and Greek
so that many of the terms we use are
a combination of modern English and
an old language, Here is a tahle show-
ing what these prefixes mean and how
they affect the major units.

Kilo = 1000, therefore multiply by
1000 or 103 (ten cubed, or 10 raised to
the third power)

Mega == 1,000,000, therefore multiply
by 1,000,000 or 108 (ten multiplied by
itself 6 times, or the 6th power)

Milli =-=ﬁ_100. therefore divide by 1000
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Micro =W%m6, therefore divide
by 1,000,000

. S 1
WMo = Miero 1,000,000,000,000

therefore divide by 1,000,000,000,000

1t is very important that you realize
the difference between the prefix kilo
and the prefix milli. The former means
one thousand times and the latter
means one-thousandth of. In the same
way mega means one million times,
and micro means one millionth of.

Remembering these points, let us
look at our unit of capacity, the farad.
This is such a large value that we
never use it in radio and television
work, in fact it is not even used in
normal engineering work. To make it
easier to handle, we have divided the
farad into a million smaller units and
call them millionths of a farad.

Since we have divided the farad into
millionths, we can write each unit
representing one millionth as a whole
number without having to worry about
decimal points, for example: 10 micro-
farads instead of .000010 farad. How-
ever, as you already know, even the
microfarad is often too large for gen-
eral radio and television use, and we
often have to write a condenser value
as .0005 microfarad. For such cases
we use micro-microfarads; a millionth
part of a millionth of a farad. This
means that one microfarad (mfd)
equals one million micro-micro-farads,
(mmf).

Sometimes we need to convert micro-
farads into micro-microfarads or vice-
versa. Doing this is really very simple.
To convert microfarads to micro-
microfarads we multiply by one mil-
lion; therefore .0005 microfarad equals
0005 X 1,000,000 or 500 micro-micro-
farads. To convert micro-microfarads
to microfarads, divide by a million.



The same thing applies to the units
of inductance. The henry is used as
a unit in radio and television work,
but we sometimes need to use smaller
units. It simplifies our calculation if
we use whole numbers instead of frac-
tions of a henry, such as .5 henry.
Therefore we use the millihenry. This
is one thousandth of a henry. In other
words .5 henry would equal 500 milli-
henries. In order to convert henries to
millihenries we multiply by one thou-
sand, and to convert millihenries to
henries we divide by one thousand.
However, even the millihenry is not
always a small enough unit now that
we are concerned with ultra-high fre-
quency television and radar. Therefore
we use the microhenry. This is one
thousandth of a millihenry, or one mil-
lionth of a henry. Conversion from
millihenries to micro-henries is exactly
the same as conversion from henries
to millihenries. We multiply millihen-
ries by one thousand to obtain micro-
henries and divide microhenries by one
thousand to obtain millihenries, Thus
.5 henry equals 500 millihenries, or
500,000 microhenries.

The ampere is the basic unit of cur-
rent. We meet it in many of our radio
and television measurements, but we
are more generally concerned with
smaller values of current such as occur
in grid and plate circuits. Here we use
thousandths (milliamperes) and mil-
lionths (microamperes) of an ampere.
The milliampere is one thousandth of
an ampere. The microampere is one
thousandth of a milliampere, or one
millionth of an ampere. Thus .25 am-
pere = 250 milliamps or 250,000 micro-
amps.

We apply exactly the same prefixes
to voltages; thus, a millivolt is a thou-
sandth of a volt, and a microvolt is
a millionth of a volt.

In the case of resistance, we do not
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normally use units smaller than the
ohm, but often in radio and television
work, we have to use large quantities
of ohms so that the numbers become
very unwieldy. Thus a much more
convenient unit than an ohm is the
kilohm which equals 1000 ohms and
is written with the letter K. For ex-
ample, a 5000-ohm resistance is often
written as 5K ohms. However, even
using the kilo prefix does not always
make the number too easy to use since
we find that values of millions of ochms
are common. Therefore we use the
megohm for one million ohms, We can
write 1,000,000 ohms as 1 megohm, or
1000 kilohms. However, as you can
see, if we write 1000 kilohms we are
getting into large numbers again, and
if we have a large number there is
more risk of errors creeping in. There-
fore, it is much more convenient to
write one million ochms as 1 megohm,
or as more commonly done, 1 M.

We use a similar system with cycles,
the unit of frequency. A television sta-
tion operating on Channel 13 has a fre-
quency of approximately 216,000,000
cycles. This is a very large number.
So we convert it to megacycles (mil-
lions of cycles) and to do this we di-
vide by one million. Therefore 216,-
000,000 divided by 1,000,000 equals
216, so we say that the frequency of
a Channel 13 television station is 216
megacycles. This is usually written as
216 me.

The kilocycle (one thousand cycles)
is used in the broadcast bands to indi-
cate the frequency of radio stations.
For example, WABC in New York has
a frequency of 770 kilocycles. This
means that the frequency is 770,000
cycles. We could, of course, express
this in megacycles, but to do this we
would have to go into fractions, since
770 ke is actually .77 megacycle. In
other words, it is not as great as one

million cycles, so in this case kilocycle
is the most convenient unit to use.

PERCENTAGES

The use of percentages is a very
convenient method of conveying in-
formation concerning relationships be-
tween numbers, By using percentages,
we can compare gains or losses more
easily without having to state the spe-
cific amounts. Of course, we could use
fractions to do the same thing, but
this uses much more unwieldy num-
bers and in order to obtain the same
reference (denominator) it would
sometimes be necessary to use fantasti-
cally large numbers. By using percent-
ages, we have a standard of reference
(100) and all the advantages of the
decimal system.

Suppose you wanted to find 29% of
193. This means 29 hundredths of 193,
so we divide the 29 by 100 and mul-
tiply it by 193. We can divide 29 by
100 and multiply the resulting .29 by
193 and obtain 55.97 or we can write
the whole problem down as follows:

29
193 X 29% = 193 X—IO-O_
5597

Because when we write x% we are
really writing “x over 100,” it is a
very simple mental process to calculate
percentages in most cases. Most peo-
ple do it by multiplying the percentage
and the number together and then di-
viding by 100 by pointing off the two
right-hand figures in the answer. Thus
57% of 83 equals 47.31

57 X 83 __ 4731
100 100

To find a certain percentage of a
given quantity, you can express the
percentage as a decimal by moving the
decimal point two places to the left,
and multiply the quantity by the re-
sulting decimal, as follows:

= 4731

30% of 70 = .30 X 70 = 21
3% of 70 = .03 X 70 = 2.1

Similarly, we can express a decimal
fraction as a percentage by moving the
decimal point two places to the right,
as follows:

75 = 75%

75 X 60 == 45, or 75% of 60 = 45

The term “per cent” is derived from
the Latin “centum” for hundred. Thus,
per cent actually means so much per
hundred. One per cent is the same as
one per hundred, or one one-hundredth;
10 per cent means ten one-hundredths.

Percentage is an easy way of ex-
pressing a proportion. For example,
you might see a survey stating that
50% of the homes in a given area had
TV sets. This would mean that for
every one hundred homes, there were
50 TV sets, so if there were 1000 homes,
there would be 10 X 50, or 500 TV
sets. In other words, 500 is 50% of
1000, or .5 X 1000.

On the other hand, if a survey
showed that 25% of the families in a
given area had more than one TV set,
you would have no way of knowing
the total number of homes with more
than one set, unless you knew the num-
ber covered in the survey. If only 100
families were covered, 25 would own
more than one TV set, if there were
1000 covered, 250 would have TV sets.

All these operations we are perform-
ing with decimals and percentages are
really very simple, provided you re-
member to count the number of deci-
mal places in the various numbers with
which you are working. Then follow
the rules regarding the position of the
decimal point.

There are several ways of expressing
the same value, for instance:

25

14 of a quantity == T 25 = 25%,



; 50
1% of a quantity - 100 — b = 50%,
ete.

In radio and television work, you
are most likely to come across percent-
age in connection with resistor and
condenser tolerances, and frequency
drift. We are not going into tolerances
very deeply at this point although we
shall in a later section of this book.
Most of the resistors and condensers
that you use are described as being
“20% condensers or resistors.” This
simply means that the resistance or
capacity of the component in question
can vary by as much as 20% more or
20% less than its rated value,

You may also see 5% and 10%
resistors and condensers, and in some
cases even 1% resistors are used.
Shown below are the various limits for
resistors ranging from 1% to 20%.

Nominal resistance = 51,000 ohms

51,000-ohm, 20% = 51,000 4 or —
10,200 ohms

51,000-ohm, 10% = 51,000 4 or —
5100 ohms

51,000-ohm, 5% == 51,000 4+ or —
2550 ohms

51,000-ohm, 1% == 51,000 4 or —
510 ohms

Percentage of Frequency Drift.
Technicians who work in radio or tele-
vision stations or with communications
equipment will often see a statement
such as the following: “Frequency
stability: plus or minus .002%.” All
this means is that the equipment is
designed to operate at a maximum
frequency variation of plus or minus
002% of its operating frequency.

Let us consider a radio station op-
erating on 770 ke. If we want to find
out what the maximum frequency
variation may be when the equipment
has a frequency stability of + .002%,
we merely calculate .002% of 770 ke.

We do this as follows:
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002% of 770 ke = 202X 770
= .0154 ke

This answer is given as a decimal part
of a kilocycle and is extremely diffi-
cult to handle. Therefore we will con-
vert .0154 to cycles. To do this we mul-
tiply .0154 by 1000, and the answer is
15.4 cycles. Therefore the maximum
frequency deviation permitted for this
radio station is 4 15.4 ¢cps. or — 15.4
cps. This is a total deviation of 30.8
cycles.

You may sometimes see a frequency
stability described as one part in 100,-
000.

: 1

. 1in 100,000 — m

This can be expressed as a percentage—
1 1
% = 100,000 X 100 == 1000 = .001%

In actual fact, a frequency stability
of at least 1 in 100,000, or .001% is
very common today and most radio
and television equipment is required
by the FCC to have much better sta-
bility than this.

SIGNIFICANT FIGURES

Sooner or later in your radio and
television mathematics you are bound
to come across the phrase “significant
figures.” This concerns the accuracy of
calculation needed in any particular
problem.
~ In most of our work a result that
1s accurate to two or three places is
sufficient, However, by this we do not
mean that radio and television engi-
neers are careless, or willing to sacri-
fice accuracy just to be lazy. The real
reason is that beyond a certain point
numbers represent such small values
that they may become insignificant—
depending on their funection.

Qccasionally we have to carry out
a division to many decimal places, but
generally this is not necessary.

Suppose we have $10 and divide it
among three people. If you divide 3
into $10 you get $3.33 for each person.
If you add together these three quo-
tients to check your arithmetie, you
find that the answer is $9.99. You have
one cent left over! You could, of
course, continue to divide and get a
third decimal place. You would have
$3.333. No matter how many times
you continued to divide you would still
get the figure 3 as your answer. So
we say that the answer is $3.33. There
is no point in going any further because
no matter how many threes you add to
the answer, it will not change the fact
that the amount of money each person
gets is $3.33.

In the answer above we have three
significant figures, We could say if we
were dividing 10 by 3 for example,
that the answer was 3.33 recurring.
The word “recurring” informs any
reader that the number 3 will continue
to occur in the answer an infinite num-
ber of times.

Mathematicians and engineers use
a special method to show that an an-
swer has been calculated to the maxi-
mum number of significant figures and
that the last figure recurs. To do this,
a dot is placed over the extreme right-
hand number. For example if we
wanted to show that 3.33 was the an-
swer, and that after this operation the
3 would recur, we would write the
number as follows:

333 !

In the case above, the significant
numbers were limited to those which
have their counterparts in dollars and
cents; in other words, they were lim-
ited by the practical consideration of
our monetary system.

In radio and television, the limita-

tions are imposed by the accuracy of
electrical instruments, and these are
seldom more accurate than 5%. Most
meter scales are marked so that no
more than 2 or 3 significant figures
can be obtained. Generally one or more
of these will have to be estimated.

Consider the following example: If
an accurately known current of 3.16
amperes is flowing through a resist-
ance of 45.7 ohms, by simple Ohm’s
Law, (E =1 X R), 3.16 X 45.7 =
144.412 volts.

However, there are no voltmeters
that will indicate differences of thou-
sandths of a volt when reading values
over 100 volts. In fact it takes a very
good voltmeter to read 144.4 volts.
Therefore we say that the last three
figures are insignificant, and for prac-
tical purposes we would take 144 volts
as correct.

However, if our calculated answer
had been 144.567 we would have re-
garded it as 145 volts. From this, we
find a system for reducing to the num-
ber of significant figures required.

Consider the figure on the extreme
right hand—in other words the last
decimal place. If this is less than 5
drop it, and use the figure on its left.
On the other hand if it is more than
5, increase the figure on its left by 1,
thus making it one number larger.

Suppose that in the first case we
had the number 103.4572, and wanted
to make it significant to 3 decimal
places. We would drop the 2 and make
the answer 103.457. It would have siz
significant figures. Now suppose that
we have the number 103.4577. This
time, reducing to six significant fig-
ures we would write the number as
103.458. The number of significant fig-
ures is determined by practical con-
siderations. If a meter cannot give
more than three significant figures, and
our results have 4 or 5, we can reduce
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to the required number as we have
shown. -

In calculations involving meter read-
ings, three significant figures are all
that are ever required, but in this case,
the three are those to the left of the
decimal point. Actually, with most
meters it is possible to read two sig-
nificant figures and to estimate the
third with reasonable accuracy. If
great care is used, a fourth significant
figure might be estimated, but since
this is purely an estimation (and since
such accuracy is not required for prac-
tical purposes) there is no point in
going beyond 3 at the most.

A general rule to follow is that if
two or more numbers are multiplied,
divided, or added, the answer should
contain as many significant figures as
the least accurate number. For exam-
ple, suppose we measure a resistance
on an extremely accurate Wheatstone
Bridge and find it is 45.7285 ohms.
Then we read the current flowing

through the resistance on a less accu-
rate ammeter and find that it reads
3.22 amperes. If we wish to calculate
the voltage, our accuracy can be no
better than that of the ammeter which
reads to two significant figures. To
calculate the voltage, we multiply
45.7285 by 3.22. The answer comes to
147.2458 volts. However, we take as
our answer 147 volts, because the am-
meter could be read to only two deci-
mal places and we thus obtained three
significant figures from it. Also, a volt-
meter used to measure the voltage and
thus check our calculations could not
give a reading containing 7 significant,
figures.

In most radio and television calcu-
lations we consider only three figures
as being significant. For example, ap-
plying the rule, the number 39607
would become 39600. On the other
hand, .39657 would become 397, and
51749 would become .517; however,
51751 would become .518, ete.
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Meter

If you look at Fig. 1 you will see
a voltmeter scale with a 150-volt range
on it. A voltage—86 volts—is indicated
by the pointer. You will notice that
each major division is sub-divided
into 5 sub divisions, each of which is
equal to 2 volts, You can also see that
it is not too difficult to read 85 volts,
or 87 volts. These values are half-way
between the marked sub divisions. We
could even estimate 87.5 volts reason-
ably accurately. Beyond that it would
be difficult, in fact foolish, to try to
estimate on this particular meter.

Now look at the second scale, in
Fig. 2. This time the scale, which has
the same number of divisions, is cali-
brated to read up to 75 volts, or ex-
actly half the previous readings.

The angular deflection of the needle
is the same, but this time it reads 43
volts. Each major scale division is
worth 5 volts and each sub division
is only 1 volt.

Now look at Fig. 3. This time the
meter scale has a full-scale value of
only 7.5 volts. With the same needle
deflection, the meter reads 4.3 volts.
Each major division is equal to 0.5
volt and each sub division is 0.1 volt.

Let us look at the relationship be-
tween the three scales. Fig. 3 is one
tenth of Fig. 2, and one twentieth of
Fig. 1 and a similar relationship ex-
ists of course, between the three read-
ings.

If we consider scale 1, we see that it
is difficult to read to half a volt. We
might be able to read 75.5 volts but
it would be merely a good guess. In
any case the meter accuracy would
not make it worth our while to read
as close as half a volt on the 150-volt
scale, since this would work out to an
error of 1in 150 or .7%. Accuracies of
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Scales

this order are usually impossible to
accomplish with the average meter.

This discussion of meter readings
brings us now to:

PRACTICAL METER READINGS

If you have occasion to buy a meter
or specify a meter for a piece of equip-

86
6 70 80 igo

o5\

FIG. 1. A 150-volt meter scale. Each scale
sub-division indicates 2 volts.

43
30 35 40 ig5

FIG. 2. A 75-volt meter scale. The scale

is the same size as the one shown in Fig. 1,

but in this figure, each sub-division shows
one volt.

FIG. 3. On this scale, each sub-division
is equal to a tenth of a volt (.1 volt).



ment, you should choose one that will
indicate the expected values at about
two-thirds of full scale. Put another
way, the meter range should be se-
lected so that all readings are made
between half scale and full scale. This
means that if you want to measure a
voltage of about 135 volts, you should
choose a 150-volt meter. This would
give more accurate readings than a
300-volt meter,

There are two reasons for this. First
it is easier to read on the lower range
meter because the divisions are larger
and each scale division represents a
smaller voltage. Secondly, the meter
accuracy, or scale accuracy, is greater
between half scale and full scale.

Meters are rated for accuracy in
terms of percentage of full-scale read-
ing. The average inexpensive meter
has an accuracy of 5% or 10% depend-
ing upon the way it is constructed.
Precision meters in high-quality meas-
uring instruments generally have an
accuracy of 2%. Whenever we dis-
cuss meter accuracy in terms of per-
centage we mean plus or minus this
figure. Therefore on a meter with a
full-scale deflection of 10 volts and a
10 per cent accuracy, the reading may
vary by as much as plus 1 volt or
minus 1 volt from the true voltage.
In other words, if the meter indicates
10 volts, the true voltage may be any-
where between 9 volts and 11 volts
(10, plus or minus 1 volt).

In the case of a 2% meter, the maxi-
mum variation with 10 volts applied
to it would be 2% of 10 = .2 volt.
Therefore at full scale, the voltage
could be between 9.8 volts and 10.2
volts.

A variation of even 10%, that is 1
volt in 10, does not seem too bad. In
many cases, certainly, a variation of
.2 volt in 10 is almost negligible. How-
ever, consider what happens towards
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the low end of the scale. For example,
the 4-volt point. Remember the meter
accuracy can vary between — .2 and
-4 .2 volt (2% of 10 volts). But at 4
volts, a variation of plus or minus .2
volt can give a reading of 3.8 volts
or 4.2 volts. Expressed in another way
a variation of .2-volt becomes 5% !

Reading 2 volts on the same meter
might give us an error of 10%. Fortu-
nately great accuracy in meter read-
ing is not generally essential because
of variations in components them-
selves. It is usually only in the labora-
tory that extreme precision is required
in reading meters and in the results
they give. As far as radio and televi-
sion servicing is concerned, in almost
every case, an accuracy of 5% or 10%
is perfectly adequate.

TOLERANCE

One of the main reasons for the tre-
mendous popularity of radio and tele-
vision in the United States is mass
production. By mass production we
mean production on a tremendous
scale, using all the assistance that can
be provided by mechanical means.
When we manufacture things using
mass production methods we have to
sacrifice something, and this is a cer-
tain amount of fine quality,

Suppose we want to wind a coil with
an inductance of 10 millihenries. In
the laboratory, a man will sit down
with a coil-winding machine, and hav-
ing calculated how many turns should
be put on the coil, proceed to wind it.
Then he measures the inductance of
the coil on an inductance bridge. The
value is almost certain to be wrong.
If it is too high, he will remove a few
turns, put the coil back on the bridge,
and measure again. If it is too low,
he will have to wind another coil, be-
cause he can’t add any turns once he

has cut the wire. The technician will
continue to adjust the coil and re-
connect it to the inductance bridge un-
til he has obtained exactly the 10-
millihenry inductance desired.

This process may take an hour. So
you can see how time-consuming it is
when you want to get ezact values. As
a matter of fact, this is one of the
reasons why the early radio and tele-
vision receivers were so expensive—
many parts were made by hand. A
machine cannot think—in spite of all
of the improvements that have been
made in automatic calculators, no ma-
chine has yet been made that can think
the same way that a man does. On
the other hand, we can set certain
limits between which a machine can
operate, and know that unless some-
thing fails, the machine will continue
to run between these two limits,

By doing this, we sacrifice the pre-
ciseness obtained by manual opera-
tions. In the case of the 10-millihenry
coil, we could design a machine that
would wind a coil to within about 1
per cent of the required value as far
as mechanical considerations are con-
cerned. But the machine could not
account for variations in thickness of
the wire, thickness of the insulation
on the wire, tiny changes in size of the
form on which the coil was wound—
changes which are sometimes caused
by temperature or weather conditions.
However, we could set the machine so
that it made the required number of
turns, say fifty, and give us approxi-
mately 10 millihenries. We can then
set up a special type of inductance
bridge with a jig (a jig is a device that
makes possible very rapid connections
for testing purposes). This inductance
bridge would have a large meter scale
with upper and lower limits on the dial.
The limits might be marked “low”
and “high” and would correspond to

33

an inductance of 10 millihenries + 5%.

The operator would take the coils
as the coil-winding machine wound
them, and drop them in the jig. If the
meter read anywhere between high and
low, he would accept the coil, although
it might vary as much as 5% from the
required value. However, similar types
of variation occur in every mechanical
manufacturing process, and by a for-
tunate coincidence, very frequently a
minus variation in one component is
offset by a plus variation in another
so that the net result is approximately
what we want.

You have heard of 20%, 10%, §%,
and 1% resistors. Let’s see what this
means when applied to a 20-megohm
(20,000,000-chm) resistance, and to a
100-ohm resistance. In the 20-megohm
resistance, the tolerance, as we call
this allowable manufacturing varia-
tion, of 20% will be 20 megohms =+
4 megohms. Thus its value can be any-
thing between 16 megohms and 24
megohms, or a 4,000,000-ohm variation
in either direction.

On the other hand, a 1% resistance
variation (20 megohms + 1%) equals
20 megohms =+ 200,000 ohms. You are
not very likely to encounter 20-meg-
ohm 1% resistors since a variation of
200,000 here is so slight as to be just
about negligible.

If a 100-ohm resistor has a 20%
variation, it can vary between 80 and
120 ohms. On the other hand, in a
100-ohm 1% resistor, such as might
be used in a multitester or & vacuum-
tube voltmeter, the permissible varia-
tion is only 1 ohm. In other words it
might vary between 99 ohms and 101
ohms.

When interpreting meter readings,
you must always take into considera-
tion the type of circuit you are measur-
ing. For instance if the voltage in a
high B circuit is supposed to be 250



volts, any value between 225 and 275
is nearly always acceptable. In an
extreme case the voltage might even
read as low as 200 and still be correct.

On the other hand, you know that
the heater voltage in an ac receiver
is normally 6.3 volts. If you got a read-
ing of 5 volts you could reasonably
suspect that something was wrong
with the circuit. But if the meter read
6 volts or 6.6 volts, you would not
need to worry unduly. A 5% error in
the meter you were using would ac-
count for .5 volt if you were using a
10-volt meter.

As you go through your experiments,
you will realize more and more how
wide the variations between individual
tubes of the same type may be. When
we take these tube variations into ac-
count and consider them in connection
with resistance, inductance, and ca-
pacity tolerances, we begin to see why
meter readings should be regarded as
guides or indicators rather than ab-
solute values.

In general, radio and television
transmitters are much more critical in
their reaction to voltage variations
than receivers are. As a result the
meters mounted in transmitter cabi-
nets, which form an integral part of
the transmitter, usually have a 2%
accuracy. In fact the FCC normally
requires meters of this accuracy to be
used for transmitters.

When using very accurate meters,
the reader should also be as accurate
as possible. If an accurate meter is
supplied, the readings are usually im-
portant and should be made very care-
fully. Remember that in an oscillator,
a very small change in voltage can
quite frequently produce a compara-
tively large change in frequency. By
the time this frequency change has
been multiplied perhaps fifty times or
more, the resulting carrier frequency
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may be a long way away from the
transmitter’s assigned frequency, On
the other hand, in the power-amplify-
ing stages of the transmitter, even a
large change in plate or screen voltage
will not affect the transmitter’s fre-
quency, and may make only a very
small change in the power output.

In the receiver, voltage and current
changes are usually not too important
provided the readings obtained are
approximately correct. For instance, in
the output stage, the power can drop
to one half of its original value, or
can double, before our ears are able
to detect the change.

Because of this very useful charac-
teristic of the human ear, we do not
have to worry too much if our output
stage voltages are not exactly the same
as those specified in the manufac-
turer’s instructions. In the case of
radio and television receivers, if the
receiver is completely inoperative, a
small variation from the manufac-
turer’s figures generally has no sig-
nificance whatever. The only excep-
tions to this may be found in the oscil-
lator and mixer stages of a superhet-
erodyne receiver where the oscillator
voltage is frequently critical. On the
other hand, if the set works, but dis-
tortion is present, a smaller voltage or
current change may have significance.
In the case of distortion in an audio
stage, the presence of a small positive
de voltage on the grid of one of the
audio tubes can indicate that the tube
is gassy, or that the coupling con-
denser between that stage and the
previous one is leaky and is allowing
B+ to reach the grid of the tube. This
naturally results in distortion.

Summing up, tolerance is important
in your consideration of meter read-
ings. Before dismantling a radio or
television receiver because B-}- varies
by 50 volts from the manufacturer’s

figure, consider whether the meter on
which you are reading this voltage
has a high or a low accuracy and

whether a 50-volt variation is impor-
tant in connection with the receiver’s

symptoms.

Algebra

Don’t let this word algebra frighten
you! As a matter of fact, algebra is
very often easier to do than ordinary
arithmetic !

Algebra is only the use of letters
as symbols instead of figures. When
we use algebra, all we do is use letters
to represent numbers and figures.
There are many reasons for doing this,
but chief among them is the fact that
using letters instead of figures is very
convenient. Sometimes we have to han-
dle very large numbers, or numbers
containing many decimal places. It is
sometimes necessary to re-write ex-
pressions containing these numbers
many times during the course of a cal-
culation. This often introduces errors
and in any case it is very time-con-
suming, So, provided that we realize
that the letters should be treated in
exactly the same way as the numbers,
and do in fact stand for numbers, we
shall have no difficulty in following
simple algebra.

We can also combine numbers with
letters and use these combination ex-
pressions in exactly the same way as
we use numbers in arithmetic—we can
add, subtract, multiply, and divide
with, and by, letters.

Ohm’s Law is probably the most well
known radio and television formula. It
certainly enters into almost every
problem in connection with electronies.
We know that Ohm’s Law states that
current equals voltage divided by re-
sistance. Instead of writing current we
use the symbol I. Similarly instead of
writing voltage we use the symbol E,
and we denote resistance by the sym-

bol R. Already we have developed a
form of algebra when we write this
expression.

E

] = =

R

Now let us suppose that we want to
calculate the value I (current) and
that we know that the resistance in
the circuit is 100 ohms and the voltage
is 20 volts. We write down R (resist-
ance) equals 100 ohms, and we write
down E = 20 volts. Now we write
E_20_,
R 100
amp. You see, all we did was substi-
tute. We replaced the letters in the
formula with the numbers they repre-
sented.

Many of us find difficulty in deter-
mining which way we need to write
Ohm’s Law to find a given circuit
value. Or sometimes we become con-
fused in translating letters into num-

down the expression I —

bexs. Although we write I — IB% or E

= I X R, this does not mean that
there is any direct relationship or con-
nection between ohms, volts, and am-
peres, except the manner in which
variations in one or two of these quan-
tities affect the third,

Ohm’s Law is merely a statement of
an operation which can be performed
only when the values represented by
the letters are known. In other words,

when we say I = g, we are stating

that the amount of voltage when di-
vided by the amount of resistance
gives the amount of current. So that
all we have to do is substitute the



amounts for the letters and then per-
form the arithmetic operatians indi-
cated.

As soon as we determine which of the
three forms of Ohm’s Law we need to
use depending upon which two values
we know, and have substituted the two
known amounts in figures for the let-
ters which represent them, we can per-
form the multiplication or division re-
quired and thus find the third, un-
known amount.

Let us take an example, using very
simple numbers:

Suppose that E = 6 and R = 2.
Substituting the figures in the for-
mula I = 2 we have:

R’ ’
6

| P

=3

Now, by substituting the figures, we
can find the other forms of Ohm’s Law.
Since E = 6, R = 2, and I = 3, we
can see that to find E, we must mul-
tiply I X R, and to find R, we must
divide E by I. This gives us the three
forms of Ohm’s Law:

E

ha
E=1IXR e
E

R=r

Every time you work out a problem
in Ohm’s Law, you are actually using

algebra. It is not so hard, is it? Here
is an example:

Suppose a tube is drawing a total
current of 25 ma. What value of cath-
ode bias resistor should be used to pro-
duce a bias voltage of 10 volts?

We know the current and the volt-
age, so to find the resistance, we use
the formula:

E
okt
You must remember when using any
of the forms of Ohm’s Law, that the
voltage must be expressed in volts, the
current in amperes, and the resistance
in ohms. So before we can go ahead
we must convert the 25 milliamperes
to amperes. To do this, we divide by
a thousand, which gives us .025 am-
pere. Then, substituting figures in our
formula, we have:

R 10 10,000
025 ' T25
= 400 ohms.

In a later reference text we will tell
you more about algebra, and show you
how algebra can help the radio-TV
serviceman. Remember that you can
complete your course and go into serv-
ice work without even reading these
books on mathematics, but if you do
study them, you will find them inter-
esting and useful not only in your serv-
icing work, but i your everyday life.
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PROBLEMS

Given here, are the correct answers
to the sample problems given through-
out this reference text, so that if you
want to try your hand at them, you
can check your work. Remember, you
do not have to solve these problems.
They are merely included to give you
practice if you want it. Do not send
your answers in to NRI, the answers
are here so that you can check them
yourself.

Addition, page 4:
345,708 38,587 37,130

Subtraction, page 5:

1741 1212 2686
Multiplication, page 8:
10,937,067 59,410,016 23,887,112
Division, page 11:

54 741

Square root, page 13:
64




IF—

If you can dream—and not make dreams your
master;
If you can think—and not make thoughts your
aim;
If you can meet with Triumph and Disaster

And treat these two impostors just the same; . . .

If you can fill the unforgiving minute

With sixty seconds’ worth of distance run,

Yours is the Earth and everything that’s in it,

And—which is more—you’ll be a Man, my son!

This poem by Rudyard Kipling has long been an
inspiration to me, so [ am passing it along to you.






