Py Y

o
23

.

e w8

3
Sy
)
b
8
4

4 .
8

2

-

Y «\%’

S";::irlt; .
At

¢ ¢
S

-
e 8
b

w 'y
L

o‘“}\),\«

e vpe

X
-

o

A4 (4L

< W

&

RADIO FORMULAS AND
HOW TO USE THEM

REFERENCE TEXT 39X

;yh".- ,;“ ,:\"f‘ &

"*‘x‘
».’

5.' ,,4
1k’:vg0,.,‘h, 2(\”
% " #Es

a.‘

L
;¢
&
p

* e

A
nﬁx iy

NATIONAL RDADIO msmurz

e R T WY L L ALY s 6}«“ s ;



ENGINEERING DATA FOR TECH-
NICIANS

The primary purpose of this Course is to prepare you to
install, operate, adjust and service radio, television and elec-
tronic control apparatus. Mathematical formulas are rela-
tively unimportant in accomplishing this purpose, although
some may find that a knowledge of formulas speeds up their
work.

Occasionally, however, a Technician finds it neces-
sary to design a particular piece of equipment; he must
then be able to predict beforehand how the unit will
perform and must be able to compute the electrical
sizes required to give the desired results. To those who
want to design special apparatus with the least amount
of experience, this book of formulas will be of great
benefit. It is truly a valuable reference book, for in it
has been combined the essential design data for many
different devices.

For the present it will be sufficient if you simply go over
the table of contents to find out exactly what is in the book,
then spend an hour or so glancing at the material in it which
interests you. After this, place the book in your reference
library, where it can serve you long after you have gradu-
ated from this Course.

Copyright 1937 by
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How To Use Formulas

WHAT IS A FORMULA?

Before we get too involved in the use, ma-
nipulation and the type of formulas to be
presented in this text let us make a few
things clear. This text is only a reference
book and contains simple, every day for-
mulas as well as those of particular interest
to the more advanced student. Keep it like
a dictionary, referring to it only when the
need for a formula presents itself. Only the
formulas which are of use in the more prac-
tical phases of radio are given. Read the
rest of the text so that you will know what
this text contains and where to look for a
specific formula when you need it.

The dictionary, which every student and
radiotrician should learn to refer to, says
that “any general fact, law or principle ex-
pressed in algebraic symbols” may be con-
sidered a formula. We have so far in our
study of radio met many formulas which
bear out the above definition. Let us con-
sider how a fact, a rule or a principle may
be expressed in terms of algebraic symbols.

Everyone knows that a train running at
a uniform speed, for example constantly at
the rate of 30 miles an hour, will travel a
longer distance in 30 minutes than in 5
minutes. Knowing the relationship of these
factors we can form a general statement as
follows. The distance covered is equal to
the uniform rate of travel times the time
running. In fact this is so general that it
applies to automobiles, runners, airplanes or
anything that is in uniform motion. It ma;
even apply to a sound or radio wave whicﬂ
is known to travel respectively at 1,089 feet
per second and 186,000 miles per second.
To set this up in algebraic form or notation,
as it is called, let us say that the letter D
will represent the distance traveled, that V
will represent the uniform rate of travel
(velocity) and t the time during which the
motion we are concerned with takes place.
Therefore the above statement regarding
distance may be expressed in algebraic
terms as

D=V Xt (1)

Observe that on the left-hand side of this
formula we have D the factor we are to
compute when we know the factors V and ¢,
which are on the right-hand side. This alge-
braic statement of a fact is essentially an
expression of equality, since what is on the
left-hand side 1s equal to what is on the
right-hand side—an equation. We say as

3

much when the symbol (=) is used for
equals.

Now there is a slight practical difference
between an equation and a formula, which
may be worth knowing. If the factor on
the left-hand side is the unknown and all
the factors on the right-hand side are known,
we have a formula. If both the right and
left-hand sides contain unknown factors, we
have an equation. We shall shortly see
how an equation may be transformed into
a formula. We will now stress the fact that
an equation is useless for purposes of cal-
culation of the unknown unless all factors
except the unknown are given or assumed
to have some definite value.

Let us go back to our original idea about
a moving train. We said that it travels
30 miles an hour. We may be interested in
knowing how far that train will travel in
16 minutes. Note that in one case we have
used the hour as the time unit and in the
second case we have used minutes. In any
formula where the factors of time, distance,
area, etc., are employed we must be careful
to use the same dimensions or units. Never
mix hours, minutes and seconds; never mix
miles, feet and inches unless the legend
associated with the formula permits such
an assumption. You would not say that 4
cows and 3 horses make 7 cows.

Thus, in order to carry out the principle
of using proper units in the problem just
given, we must either convert the rate of
travel into miles per minute or the time
into hours. Using the first scheme, we say
that 30 miles an hour is the same as % mile
per minute, simply because there are 60
minutes in an hour and 30 = 60 is 2. You
will get along much better in practical work
if you express numbers in terms of decimals.
So we would say .5 instead of %. Everyone
knows that if a train moves .5 mile per
minute that in 16 minutes it will travel 8
miles. But if we use formula (1), we would
go about it in this way. We would say
that V equals .5, and ¢ equals 16. Substitut-
ing in the formula we get

D=.5X16
D= 8

Now let us consider other types of for-
mulas.

There is a law or a principle in physics
that stipulates that energy can neither be
created nor destroyed. For example, if you
send an electric current through a resistor,
the electrical energy is transformed entirely



into heat energy. We know from a study
of electricity that the electrical energy is
equal to the power multiplied by the time
during which the power is supplied. In
algebraic notation let us call W the energy,
P the power and ¢ the time, which with the
above permits us to show that

W = Pt (2)

Note that the multiplication notation (X)
is omitted in this formula. If P and ¢ de-
note separate factors, it is customary when
algebraic symbols are used to omit the sign
of multiplication.

We also know that the power absorbed
by a resistor is equal to the square of the
current multiplied by the ohmic value of
the resistance, and of course we are all fa-
miliar with the formula:

P =IR (3)

We may now say that the energy absorbed
by the resistor is equal to the product of
the square of the current, the ohmic value
of the resistor and the time. As a formula
we 8ay:

W = I*Rt (4)
Formula (4) means little to us until we

know the dimensions of W, I, R and ¢, so
as a useful formula we should say

The Formula> W = I*Rt (4a)
Where W is in watt-seconds or joules
TheLogend>{ 1§ 1410 8m0ers
| ¢ is in seconds

Although the expert from long experience
knows what to substitute in formula (4), the
average man needs the information or
legend given with the formula as in (4a).
We must understand the dimension of the
algebraic symbols if we want to make prac-
tical use of a formula.

RADIO USES FOR FORMULAS

Formulas are extremely helpful in service
work. This does not mean that you cannot
service without using formulas. For ex-
ample, a C bias resistor burns out and it
must be replaced. What replacement re-
sistor should you use? If the service cir-
cuit diagram tells you the resistance value
and the power rating, trying to figure out
the proper resistor to use would be entirely
unnecessary. In some cases, however, only
the resistance value may be given. Shall
you use a 1, 2, 5, 10, 25, or a 50 watt re-
sistor? You know that the higher the rat-
ing the more costly will be the replacement
resistor. Experience may tell you what
power rating it should have. Substitution
in a simple formula will remove all doubt.
Again, maybe neither the value of the re-
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gistance nor the power rating is known.
You may insert a variable resistor shunted
with a voltmeter and adjust the resistor un-
til you get the correct bias and then guess
at the power rating. Simple calculation
will eliminate this and even remove the
errors of measurement.

Suppose you make a point to point re-
sistance test. The chances are that you will
not be told the net resistance between the
two test points. If two or more devices are
in series, you may simply add their respec-
tive ohmic values. Suppose some device is
shunted by a resistor. What then? You
must know how to compute the total re-
sistanee or the test value will be useless
to you.

Should you decide to use a resistance-
capacitance filter to buck out hum, you may
juggle and change resistors and condensers
until you get the right combination. If you
compute the correct values from a formula,
you will have accomplished a considerable
saving in time.

If you want to extend the range of a mil-
liammeter or a voltmeter, you will find that
calculations will make the extension easy.
Suppose you want to build an oscillator for
service work, using a variable condenser
that you have on hand. You may guess at
a coil, then add or take off turns until by
test you hit the right range. No doubt
you may have to when you calculate the
correct coil. The chances are good, though,
that you will never need to add turns and
probably will have to take off only a few
turns if you start with calculations.

Example after example could be given to
prove the helpfu'ness of computation with
formulas. You may or may not find them
useful or a time saver. People differ in
this respecs.

When we come to radio design, we find
formulas an absolute need. Building a re-
ceiver or transmitter from blueprints or a
kit is not design. It is merely assembly.
What the value of a resistor, a coil or a
condenser should be when starting from
“scratch” is a problem of design in which
formulas play an important part. You can’t
use formulas blindly, for the theory of the
circuit and the effect desired has a lot to
do with choosing the correct formula. That
c:ges from your study and experience in
radio.

NOT ALL TERMS ARE VARIABLES

Now let us look at a formula in more
detail. We have by custom placed the un-
known factor on the left-hand side of the
formula, while on the right may be placed
a simple or complex algebraic arrangement
of known factors. These are called vari-

ables. To distinguish them, the known fac-
tors are referred to as independent variables
because we may assign to them any desired
value. The unknown factor is referred to as
the dependent variable because it will vary
as we vary the terms on the right-hand
side, and its value will depend on what
values are assigned to the independent vari-
ables. A simple example:

X, =6.28 fL (1)
Where X1, is in ohms when
is in cycles per second
and L is in henries
Here f and L are the independent vari-
ables for f the frequency may be 60, 120,
5,000, or 1,000,000 cycles per second. L may
be 30, 2, or .002 henries. Xy will vary as we
carry f and L, and its value in a particular
case will depend on what values we assign
to f and L. For example, if f is 60 c.ps.
and L is 10 henries, X according to the
formula will be:

X, =6.28 X 60 X 10
= 3768 ohms.

What about the number 6.28 in the for-
mula? First of all we know it is a number
that does not vary as we change f and L,
under any condition. For that reason it is
often called a constant. To be able to talk
intelligently about these constants we must
know how formulas are obtained.

Most of the formulas you will find in this
reference text are the result of mathemati-
cal deduction. Mathematicians, fortified
with such basic truths or laws as Ohm'’s
Law, Kirchoff’s Law, the law of conservation
of energy, derive by mathematical manipu-
lations, equations or formulas. As they try
to establish practical facts from basic laws
they obtain formulas that are extremely
helpful to scientists, engineers and practical
technicians.

We will not go into the derivation of
formulas from basic facts. In fact, only a
few men bent on research work and
equipped with a knowledge of higher math-
ematics and practical physics can attempt
such a procedure. Let us take what these
capable men have provided and use their
results as we see fit. In other words, let us
stick to our specialty—for we live in a
world of specialists.

Now what does all this have to do with
the constant 6.28? The fact is that formula
(1) could have been written as

XL - 21’!11 (2)

Apparently 6.28 must equal the expres-
sion 2r. The notation = (pronounced pie)
is a geometric notation to express the ratio
of the circumference to the diameter of a
circle. It has a value of 3.14159 plus a
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string of numbers. Some one worked it out
to about 600 decimal places. For radio pur-
poses 3.14 is good enough. Therefore
2 X 3.14 equals 628. Now how did the
number 2 and = get into the formula?

Without getting into deep mathematical
discussion let us say that constants like
these get into formulas as the result of ex-
pressing electrical ideas in geometric terms
—circles, arcs and spheres. Thus 2r in for-
mula (2) may be the result of expressing
the ratio of the circumference to the radius
of a circle. You will find a number of
mathematical constants in radio formulas,
particularly :

~ = 3.14 4x? = 39.5
1/ =0.318 vr = 1.77
2r = 6.28 e = 272*
= = 0.87

* ¢ is pronounced epsilon.

We have considered one way in which a
constant may get into a formula. Let us
consider another important way. We said
that the electrical energy absorbed by a re-
sistor of value R ohms when a current 1
amperes flows through it for ¢ seconds will
be given by the formula:

W = I*Rt watt-seconds or joules

But we know that this energy is trans-
ferred to heat and, if we have any knowl-
edge of the branch of physics referred to as
heat, we will know that heat energy is ex-
pressed in calories. One calorie is the
energy required to raise the temperature of
one cubic centimeter of water 1 degree Centi-
grade. Obviously, if we were a station oper-
ator where water cooled tubes were used, we
would be interested in knowing the for-
mula involving calories. By the law of con-
servation of energy we know that electrical
energy is transformed into heat energy and
there must be some number or constant
that will express joules in calories. We
show that in algebraic form thus:

W = KI*Rt calories (3)

We call the letter K the constant of pro-
portionality; in fact formulas are full of
them. By experimental evidence K in
formula (3) is 0.24 and we rewrite the for-
mula as:

W = 0.24 I’Rt calories (4)

Here is another way of showing how the
constant in a formula may apparently vary.
You are all familiar with the resonance for-
mula:

_ 1
2 \/LC ®)
Where f ic in cycles per second

when L is in henries
and C is in farads



But the farad is a very large condenser unit
value never met with in practical problems.
The microfarad is a more practical dimen-
sion. We may express formuia (5) as fol-
lows: Where f is in cycles, L is in henries,
and C is in microfarads, thus:

= —— cC.p.8. (6)
C

For very high frequencies, even the henry
is too large as a dimension, so formula (6)
may be expressed thus

gl 159100

JVIC ™

Where / is in cycles
when L is in microhenries
and C is in microfarads

VISUALIZING FORMULAS

In your study of radio you must have
noticed that a formula had other uses than
for the purpose of computing the dependent
variable. Formulas were introduced to give
you some idea of the relationships involved
in certain electrical phenomena. Take a
simple case of heat dissipation in a resistor.
The power loss is given by the formula:

P=DIR (1)

Where P is in watts
I is in amperes

R is in ohms
— 3
L z S Load
L SR
Sfield 3
heostat
Fia. 1

Of course, in a simple circuit like Fig. 1,
consisting of a resistor connected to a vari-
able voltage generator, we may change R,
or vary I by changing the voltage. Suppose
we double the ohmic value of the load re-
sistor R, keeping I constant by adjusting
the generated voltage. Formula (1) tells
us that the power loss doubles. On the
other hand, suppose we double the current,
keeping the load resistor constant, then for-
mula (1) tells us that the power is increased
four times, or, as the expert puts it, “as the
square of the current.” You can only get
the full meaning of all this by substituting
numbers for I and R in the formula. For
example, let R =2 ohms, let I at one time
be 2 amperes, 4 amperes, 8 amperes, and etc.
Figure out the power loss by means of the
formula.
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2X2=
4 X2 = 32watts
8§X2=
16 X 2 = 512 watts

Such a series of substitutions have the
effect of portraying the formula. We learn
that, when the current and resistance are
increased, the effect of current on power loss
is much more than the effect of resistance.
This is what experts refer to as visualizing
the formula.

So important is the visualizing of for-
mulas that in the discussion of radio theory
you will find that formulas or, to be exact,
equations are presented with the sole pur-
pose of showing how the dependent vari-
able is affected by the independent variable.
For example in the discussion of the force
which moves the cone in a moving coil
loudspeaker unit we may say that

F = KBNI 2)

Where F is the force
the flux density
N the number of turns in the voice coil
I the current through the coil
K the proportionality constant.

As long as the value of K is unknown and
the dimensions of B, N, I, and F are not
given, formula (2) has only the power to
help us visualize how F the force is af-
fected by B, N, or I. We are told that in-
creasing the flux density in the air gap (in-
creasing the field current up to saturation)
produces more force. Likewise, increasing
the voice coil turns or current has the same
effect. Even though the formula has no use
in calculation, we may in design find that
such a formula is valuable. After the
speaker has been made, we may find that
the force produced is too great. This for-
mula tells us that if the flux or the coil
turns are reduced the force will be pro-
portionately reduced.

The constant K may be determined ex-
perimentally, if we set up a representative
moving coil system and measure B, N, I
and F. As we will see shortly, formula (2)
may be rearranged as

_ F
K =55 @

By substituting the values of B, N, I and F
in this formula, we may compute K. As
long as we do not alter the geometry of
the system; that is, as long as we use in
formula (2) the same dimensions that were
used in formula (3) to compute K, we may
assume that the value of K so computed
will give us the correct result for F upon
substituting specific values for B, N and I

There is another way of getting K. We

have a more basic formula for force derived
by mathematical physics namely:

F = Bl (4)

Where F is the force in dynes
B is flux per square centimeter
] : length in cm. of wire perpendicular te

ux
I is the current in abamperes
(10 amperes = 1 abampere)

But note that ! may be replaced by I'N,
where I’ is the average length of one turn of
the voice coil in centimeters and N is the
total number of turns. Comparing the for-
mulas (2) and (4), it is obvious that I’ and
K are equal when the units given in for-
mula (4) are used. However, if it is de-
sired to express the force in more practical
units, such as pound, K must be changed
to include the factor of proportionality
necessary for converting dynes to pounds.

But all we have said regarding K does
not alter the use of formula (2) for pur-
poses of visualizing. even if K is not known.

[ ke
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Let us take one more example of the
power of a formula to help visualize circuit
conditions. Figure 2 is a simple tuned
plate oscillator, using a tube having u as
the amplification factor and G as the mu-
tual conductance at operating potentials.
We say that oscillation will begin if the fol-
lowing relation is true:

— L
M=Cr L
>Gun u
Where M is in henries
r isin ohms
C is in farads
Gm is in mhos

L is in henries
# is a number

The notation S means “equal to or greater
>

than,” the value computed after the terms
on the right side have been replaced by
values and the total evaluated. This for-
mula allows us to visualize the following
facts: M, the mutual conductance between
L¢ and L, may be less for a tube having
large values of Gm and u. A large load r,
which may be the resonant circuit resist-
ance, with or without an applied load, calls
for a larger coupling, M. It tells us that

if L is large C may be small without alter-
ing the condition for oscillation. Of course
this formula tells us nothing about the oscil-
lator once it is in operation. It merely
helps guide the design of an oscillator that
will at least start to work.

EXPRESSING FORMULAS
GRAPHICALLY

The previous section brings us face to
face with the fact that we may go a step
further in visualizing formulas. We may
express the formula in picture form, gener-
ally called a curve or a graph. If drawn
roughly from inspection of tge formula, it
is usually done so to convey generally the
effects that the independent variables have
on the dependent variable. Experts can

- look at a formula and roughly draw a curve

showing the desired relation between known
and unknown factors.

F1a. 3

Graphs and curves are not new to you, as
you have constantly met them in your
study of radio. But here let us investigate
curves a little more critically.

y
T HH
- -y
=15 2
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As far as the practical man is concerned,
a formula may be represented as lines on
aper or, as we say, in two dimensions. To
e sure, we may represent formulas as a
solid or curved surface, often referred to
as three dimensional representations. Per-
haps you have seen clay models of formulas
as in Fig. 3. The latter is particularly valu-
able when you wish to portray how the de-



pendent variable depends on two independ-
ent variables. We will shortly see how all
such formulas may be replaced by a repre-
sentation on graph paper.

AAAT IS
SR %% i
SO

In representing formulas we encounter
several types of graph or plotting papers as
represented by Figs. 4, 5, and 6. Figure 4
is referred to as rectangular coordinate
paper, the vertical lines to the right and
left of 00s, representing * various values of
the independent variable, or z, as it is often
called in algebra. The horizontal line above
and below the line mm, represents the value
of the dependent variable, or y, as we often
call it in algebra. In such a representation
the vertical and horizontal lines are uni-
formly spaced and may represent any de-
sired value of the factor: 2 feet, 2 henries,
2 microfarads, 2 micro-microfarads; or 4, 6,
10, 20 feet. Usually you will find, on rec-
tangular coordinate graph paper, bold hori-
zontal and vertical lines each separated by
light lines dividing the bold lines in 5 or 10
equal spaces. For reason of simplicity in
plotting and reading curves it is always well
to have each major division represent some
multiple or submultiple of 10—10, 20, 1, .01,
ete. No doubt you have recognized all this

1000
1
100
i
10
1 Tovo

"0 190
F1a. 6

* Lines 001 and mm; are drawn in if one wishes to
l;ldo‘tl :1.1 ‘(:‘mzr En“:drmlu' that is whenlthe_re are + and —
rant is -uﬁoient'."u :iﬁl g:tlhown.p R o i
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from the curves presented in the regular
texts.

When you have a formula involving one
independent and one dependent variable
you can present it on a graph like Fig. 7 by
calculating the values of y (the dependent

y

I

1
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|

|
Y HT ’
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5 x 10 x
Fra. 7

variable) for various values of z (the inde-
pendent variable). Spot the vertical line
corresponding to z, and the horizontal line
corresponding to y. At their intersection
place a dot, a small circle or a cross. After
locating several intersections, connect the
markings with a smooth curve, using pref-
erably a “french curve” (see I“ig. 8) avail-
able at any drafting supply house. When

Fia. 8

drawing a curve with figures computed from
a formula, you should be able to draw a
smooth curve through all points. Although
Fig. 4 shows four quadrants so as to repre-
sent + and — values of z and y, we rarely
have to draw such curves, as negative values
may be represented in a single quadrant,
merely by noting the fact on the curve.
As shown in Fig 7, oz then represents z and
oy represents y.

Figure 5 shows another form of graph
paper—polar coordinates. In rectangular
coordinates any point on the surface of
the paper can be referred to by means of
two reference coordinates, the z dimension
and the y dimension. In polar coordinates,
likewise, any point can be referred to or
located with two reference coordinates, but
one is an angle and the other a linear
dimension or simply a length. Polar co-
ordinate paper is generally used to repre-
sent formulas where an angle is involved
and you want to retain the physical sig-

nificance of the angle. For example: repre-
senting the shape of a straight line fre-
quency condenser, or the special cut plate
used in the oscillator of a superheterodyne
receiver, or the field intensity around a
transmittin% antenna. In such cases the
angle 6 is the independent variable and the
radius r, the dependent variable. Note that
this graph paper is laid out so it is easy to
spot any angle from 0 to 360 degrees and it
is easy to assign any value to the various
circles. A point at a distance r from the
center O measured at an angle # with re-
spect to the horizontal reference line 00’
establishes one of the points on the curve
to be drawn.

Figure 6 illustrates the log-log plotting
paper and is quite valuable in representing
formulas involving logarithms of the inde-
pendent and dependent variables. Log
plotting papers are also made so only one
of the rulings is spaced according to loga-
rithms called semi-log paper. You will find
a large number of formulas, which are best
visualized by plotting on log-log or semi-
log paper.

Now why is a picture of a formula so
valuable? First you have a clearer insight
to the formula. You can tell whether one
factor changes faster or slower with respect
to the other, observe if saturation is real-
ized, whether there are maximum and mini-
mum values, and how many. Graphs if
carefully drawn may replace in practical
work subsequent calculations using the for-
mula. Approximate but valuable results are
quickly obtained.

Going a step further, suppose we consider
the formula for determining the impedance
of the circuit shown in Fig. 9.

X, R
> Z <
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The formula is:
Z =R FX2 (1)

Where Z is in ohms
R is in ohms
Xy, is in ohms.

Here we have a formula with two inde-
pendent variables R and X, and one de-
pendent variable Z. Practical radio men
want a simple picture of this formula, con-
sidering the fact that both R and X. may
vary. Suppose that R and X. may each be
any value from 0 to 100 ohms. We may
start by saying that B is 0 and compute Z

for various values of Xy from the simplified
formula

Z=NOF+X2=VX =X, ()

Obviously Z will equal Xy.

We may next assume R equal to 10, 20,
30, etc., ohms and compute from formula
(1) the values of Z when Xy is 10, 20, 30,
etc., ohms, from the formulas

Z =10 + X2 = V100 + X2 (3)
Z = V20" + X2 = V400 + X,? 4)
Z=N30+X2=V90+X: (5

.................... ete.

Note that we have held one independent
variable fixed while we substituted for the
other variable. Thus we may have 11 curves
to represent formula (1), by assuming R in
one case to be 0 ohms, and in other cases
to be 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100
ohms. Plotted we get a group of curves as
shown in Fig. 10 which are called a family
of curves.

I

160
140 9
120
/

100 |2 //'////

wl 1 — =z

Zgo|l e e 4/

20 1 27

60 | 1 “//"
1 -
40 : /'/?
=S

20 F "’;

"

° 2

10 20 3o 4o 30 60 o 8o 90 100

Fia. 10

Note that in such a representation each
curve of the family is marked with the value
that was assumed for the independent vari-
able held fixed in computing that curve.

If desired, a second family of curves simi-
lar to Fig. 10 may be obtained to show how
Z varies with R for a series of fixed values
assigned to Xr. This is often done, par-
ticularly in the study of relationships some-
what more complex than that represented
by formula (1).

In this simple case this is not necessary
since we may use the family of curves of
Fig. 10 to find Z for any of the value of
R or Xy within the range of values specified.
For example, if you wish to assume a value
of 26 ohms for R, we can imagine a curve
between R =20 and R =230 (as shown
dotted) and thus find Z for any value of
X1 between 0 and 100 ohms.



EMPIRICAL CURVES

Quite often we start with a curve or a
family of curves and then derive the for-
mula. It is then called an empirical for-
mula, meaning a formula derived from ob-
servation or experience. Compare this with
the formula derived by mathematical de-
duction. We should remember that a for-
mula derived mathematically is checked by
experiment by comparing the curve drawn
from the formula, with the empirical curve.

There are many cases where the only solu-
tion to the problem is the result of exper-
ment. If the phenomena is one where a
formula would be valuable, one may be de-
rived from a curve in which the results
obtained experimentally are plotted with
precision. Here is a typical case. In the
manufacture of many of the basic products
for radio equipment, high temperature fur-
naces are used. The temperature may be
measured by inserting a platinum wire re-
sistor and measuring its resistance. Each
value of resistance in turn represents a
definite temperature. Let us see how the
corresponding values of temperature can be
determined.

First of all, there is the simple fact that
most metals change their resistance with
temperature. By placing the resistor in a
chamber in which the temperature, ¢, may
be varied in known steps and then measur-
ing the resistance at these representative
temperatures enough figures are obtained to
draw a curve, similar to Fig. 11. If you use
the same resistor and the same curve, you
have a temperature measuring device.

R ohms

€’ Cent
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Going a step further we find that the type
of curve shown in Fig. 11, is typical of all
metal resistors and may be expressed as an
empirical formula:

R. = R, (1 + at + b?) 1)

Where R¢ is the resistance in ohms at
the temperature in centigrade
R, is the resistance at 0 degrees Centigrade
and a and b are constants depending on the
metal used.

By carefully analyzing the experimental
curve we would find that for platinum wire,

a = +.00392 and b = —.000000588, in which
case formula (2) becomes

R, = R, (1 +.00392¢ — .000000588¢)  (2)

Here is another type of constant found in
formulas. The values a and b are found
mathematically from the experimental curve
by a complicated process which we need not
consider.

Formula (2) also tells us that in practical
cases the term (—.000000588¢%) is negligible
in comparison with the first term (.00392¢)
if the temperature ¢ is not much higher than
the reference temperature, 0 degrees Centi-
grade. We rarely expect parts in radio
equipment to be over 50° C. If we use this
as a limit, we may compare the two terms
by substituting 50 for ¢t. Thus:

00392 X 50 = +.196
.000000588 X 50 X 50 = —.00147

So if we neglect the second term we may
have an error less than 1 per cent—which
for practical purposes is quite all right.
But, in the case of the furnace at 1000° C.,
b is a very important factor. Thus in low
temperature work formula (1) reduces to:

R =R, (1+al) (3)

The idea of neglecting terms in a for-
mula is very important and is used time
and time again in radio work. Most solu-
tions to radio problems can only be relied
upon to about 5 per cent. So why compli-
cate the work with useless computation?
When terms in a formula have negligible
effect on the answer, they should be neg-
lected. Only experience or trial can guide
you in this phase of formula simplification.

In practical radio the empirical curve is
far more important than the resultant em-
pirical equation or formula. The Es-Iy,
Ey-Io, Ee-I,, fidelity, sensitivity, selectivity,
field radiation, and magnetic curves are only
a few of the empirical curves that are used
directly and never interpreted into a for-
mula. Curves like formulas are essential
for our purpose, in that they give practical
information. If curves are simpler to get,
are more direct and do the job, why try to
make a formula out of them? Especially
where the formula would not apply in all
cases. Radio men do not try. They use
ghe curves when it is to their advantage to

0 S0.

FORMULAS INVOLVING CURVES

You will find a large number of radio for-
mulas where the right hand terms include
some factor whose value must be deter-
mined from a graph or perhaps a table.
This table or curve may be the result of
experiment or it may be the result of ex-

pressing complicated algebraic expressions
in their simplest terms.

The most notable example of such a case
is the computation of inductance from the
geometry of the coil. The inductance of a
round solenoid coil may be given by the
formula

L = FdN? (1)

Where L is in microhenries
N is the number of turns
d is the diameter of the coil in centimeters
or inches, depending on whether measure-
i ments are made in inches or centimeters
and F iI"" a fla.;to‘; determxdl ined fr<l>lm a ourvoi. :ﬁa
ig. , depending on the rati
length of th:e coil to imndiamettaa‘ 2.9 4
In using formula (1) we may either have
a coil with a definite number of turns and
with a known coil length and diameter
which permits us to compute L; or we
would from trial and error try various N
turns, [ lengths and d_diameters until we
found a combination that would give the
desired L.
From Fig. 12 we determine F for the ratio
of 1/d for each combination and substitute
the value
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in formula (1). In this case F is merely a
constant that could be computed from [ and
d by a complex algebraic expression. The
curve simplifies the problem of practical
computation.

EVALUATING THE UNKNOWN

By now we know that a formula has on
the left hand side the factor or variable
that we want to compute. On the right
hand side, expressed in algebraic manner,
are the constants and independent variables
that are known or quickly found from tables
or curves. To evaluate the unknown we
merely substitute on the right hand side the
values for the algebraic notation and by

mathematical operation derive the final
single number or value. We may look on
this as sort of a mill.

It is highly important that this reduction
process be as systematic as possible, other-
wise you will get into a tangle. There is
only one way of developing the technique
of manipulating algebraic reduction—by
working at it. Take a simple formula, for
example, the case of an inductive reactance,
a capacitive reactance and a resistance all
in series, as shown in Fig. 13.

Fia. 13

If an A.C. voltage E is connected to this
circuit, the current I ﬂowinf in the circuit
will be given by the formula:

E

I =
VE + (X - X
Where E is in volts
R, X1 and X are in ohms
I is in amperes
We know that the right hand terms will
reduce to a single valued number if we know
the value of E, R, Xv-and X, and substi-
tute them into the algebraic expression.
Suppose R=2; X.=35; X.=2; .and
E—=10. How would you go about reduc-
ing the right hand terms to a number?
First of all, we substitute in formula (1) the
number for the letters, thus:

10
d ==
V2 + (56 -2y
Our next problem is to get rid of the com-

plex expression V22 (5—2)°. But let us
do this in steps. First we know that
(5—2) equals 3; therefore (5—2)* must
equal 3. So we obtain:

10
I =
vzt
We know that 2? equals 4, and 3* equals 9,

so as the next step in simplifying expression
(3) we get

(1)

(2)

(3)

S 10 _ 10
Vite V13

Our next step is to evaluate V13. You
may use the long method as taught in gram-

mar school, or use the slide rule or loga-
rithms as explained in a previous text. We

will find that V13 equals approximately

4)

10 1
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3.60. Therefore, the next steps in evaluat-
ing the value of I when E is 10, R is 2, Xy
is 5, and X. is 3, follows:

= —-}.9—-
I=3% w

and by division:
I = 2.77 amperes. (6)

You will find the evaluation of the un-
known simple and quick if you follow a sys-
tematic method and realize the importance
of certain algebraic notations. Thus:

ab means a multiplied by b

a + b; a/b means a divided by b

a + b means a added to b

a — b means b subtracted from a

a? means a multiplied by itself (aa)

a® means a multiplied by itself twice (aaa)

" _{/ a; a*$ means the square root of a
s i a; a¥ means the cube root of a
v a?; a% means the cube root of the square

of a
2.72'%2 means the 1.32 power of 2.72

Furthermore, you may find expressions
like (4* 4 2) 125, the brackets () indicat-
ing that you should first evaluate the terms
within the bracket before multiplying by
125. Again you may find expressions like:

v @ +2)1.25 + 29.3] 6.28

which indicates that the term within the
parenthesis () is evaluated first; then the
result is multiplied by 1.25, then this result
added to 29.3, before multiplying by 6.28.
Now you may find the square root of the
resultant number.

In the case of fractions, always reduce
the numerator and denominator to a single
valued number before dividing.

SIGNIFICANT FIGURES

The number of significant figures to be
used when substituting numerical values
into a formula, and the number to retain
in the final answer is important. Starting
with more significant figures than are re-
quired is a waste of time and effort and
does not yield a more precise solution.
Don’t overlook this fact. The subject, sig-
nificant figures, is not new to you.

Precision of measurements is the im-
portant factor in determining how many
significant figures you shall start with and
retain in the answer. Let us take a simple
example. Assume that we loaded a gen-
erator with a 3 ohm resistor and then
measured the terminal voltage as 10 volts.
Then by Ohms law, the current:

I =E/R =10/3 (1)

STEAM POWERED RADIO.COM
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Strictly speaking,10+3 equals 3.33333333+
ete., indefinitely or until we get tired of
writing the numeral 3. Suppose an 0 to §
ampere meter was inserted in the circuit and
for the sake of simplicity this meter had
negligible resistance. What current value
do you think you would read? If the meter
is one of those used in ordinary radio work,
the meter maker tells you beforehand not
to rely on it to more than 2%. So with
this as a start you may read 10/3 plus 2%
or 10/3 minus 2%, which means that if
everything else were perfect you may read
any value between 3.26 and 3.39 amperes.
The next question is in reading the meter
scale as close as the latter values. The fact
remains that you may read any value be-
tween 3.2 and 34 amperes. Common sense
tells us that 3.3 amperes is a more reason-
able answer than 3.33333 4 ... etc.

In this simple problem there are other
reasons why too many significant figures
may be in error. In the first place, with
what precision did we measure voltage, and
measure the resistance? If you used an
ordinary voltmeter calibrated to within 2%,
you may have read 10 volts but could not
rely on the value as being correct. The
actual value may be between 9.8 and 10.2
volts. Likewise the resistance may be
measured as 3.0 ohms, but may be larger or
smaller than this value, depending on how
precise is the measuring equipment. When
you place a voltmeter in the circuit you
disturb the circuit and 10 volts may be
slightly low.

The upshot of the whole matter is, take a
practical attitude towards significant figures.
Use reliable measuring equipment and sub-
stitute in the formula the numbers that are
obtained from measurements. Other figures
—that is, constants—should not have any
more significant figures. Here is an ex-
ample:

X, = 2xfL (ohms) 2)

Whereiis in ¢. p. 5. and
is in henries

We may assume that the frequency of the
supply is 291 c.p.s. and we measure L to be
6.2 henries. The value of = is 3.14159 to 6
significant figures. It will be perfectly safe
to use the value 3.14. Thus:

X, =2X314X291 X62=17

If you follow the long multiplication
method, you will get the absurd answer of
X1, =11330376; if you follow the short
method used by engineers, you will get
X1 =11330; if you use a 10 inch slide rule,
you will get Xy, = 11330.

Slide rule calculations are as close as you
will need to compute on a sensible basis.

-—— e p———

That is why every engineer and technician
uses a slide rule.

COMPUTATION CHARTS AND TABLES

Magazines, texts and articles intended for
the average technician often have special
tables for finding squares and square roots,
cubes and cube roots. Countless charts
have been prepared to find the value of re-
sistors in parallel, resonant frequencies of a
coil and condenser combination, and other
similar values. Of course they are time
savers, and you may use them if you wish
if they are available.

We feel that such schemes defeat the de-
sired purpose of formulas. If you get into
the habit of using charts and tables you
develop mental laziness and fail to use for-
mulas for the purpose they are intended.
Get into the habit of using the formulas
directly, computing by the engineers’ short
method, by using logarithms or a slide rule.
It is good practice and you know at all
times what you are doing.

Do not assume that graphical and mechan-
ical means of solution are not desirable.*
They are, but only where you are going to
solve similar problems over and over again.
This is usual where one specializes in de-
signing similar devices.

REARRANGING FORMULAS

Quite often we remember or find a for-
mula which is not set up for ready solution
of the unknown, that is we find the un-
known factor on the right-hand side with
the known factors. We may use the for-
mula as given or rearrange it into the usual
form; unknown factor on the left, known
factors on the right. A simple example will

bring out what is meant. Take the im-
portant basic formula:
1
2r yJ'LC
Where/ isine. p. s.
L is in henries
C is in farads

Suppose we have a problem where we
know the frequency involved and have a
condenser which we wish to use. We want
to know what inductance together with the
available capacitor will give resonance at
the frequency f. If formula (1) was ar-
ranged so L was on the left and C and f on
the right, we could solve our problem by
direct solution. How can we go about ar-

* This subject is beyond the scope of the average
N. R. L. student. For a man with an advanced knowl-
edge of mathematics we suggest Lipka’'s book, *‘ Graph-
ical and Mechanical Computation,” published by
John Wiley and Sons, Inc., C. Price, $4. Con-
siders alignment charts in detail.

13

ranging the formula into this form, assum-
ing that we do not know the new formula?
For such a procedure you must have a suit-
able knowledge of algebra.*

Algebra tells us that if we perform the
same operation to both sides of an equation
we have not destroyed its validity as a cor-
rect equation. So, in the above case, let us
square both sides of the formula. We get:

1
7 = 2

Now let us multiply both sides by L, which
gives us:

_ L
PL =516 ()

We may now cancel the L in the numera-
tor and the L in the denominator of the
right-hand term, which then gives:

FL =z,1‘% (4)

Now let us divide both sides of equation (4)
by f*, and get:

L " 1
7 = mcp (5)

Cancelling f* on the left-hand side, we get
the desired formula:

= N
£ —41’Cf‘

Most beginners, when they rearrange a
formula, are doubtful of its correctness.

A simple check of the algebraic manipula-
tions is easily made. We know that the
original formula (1) is correct. Assume
values for the unknown, in fact any value.
Let us say that L is 2 henries, C is 2 farads.
Of course, 2 farads is an absurd value, but
it does not matter in a check. Substitute
these values in formula (1) (the original),
and we find that:

f i 1 W |—— 1

2r 3 x2 62847 0628X2

-l - .0796 c.p.s.

12.56

(6)

Assume that the value of .08 is close
enough for our present needs. Now if the
derived formula (6) is correct, we should
get a value of 2 for L, when we substitute

* We suggest that you study such texts as
Mathematics for Electricians and Radio Men, b
Nelson M. Cooke. Published by McGraw-Hill Boo{

Co., Inc.,, N. Y. C. .
Algebra for the Practical Man, by J. E. Thompson
Published by D. Van Nostrand Co., Inc., N. Y. C.
Practical Mathematics, Part II, by C. I. Palmer
Published by McGraw-Hill Book Co., Inc., N. Y. C.



08 (closest value to .0798) for f and 2 for C.
Let us try this. Thus by substitution:

1
. 4x2Cf?
1
TP X2 X .08
1
4 X314 X3.14 X 2 X .08 X .08

= %-5- = approx. 2

we have proved that the derived formula
is correct.

Quite often it is not easy to rearrange a
formula in the standard form. In fact, when
a problem arises where the unknown is on
the right with known factors, experienced
technicians don’t even try to derive a suit-
able formula. They make immediate sub-
stitutions and solve by algebra for the un-
known. Let us consider a simple example.

A radio amateur desires to build a trans-
posed feeder line between the antenna and
his transmitter. The line is to have a surge
impedance of 440 ohms and he wants to use
standard transportation blocks that place
the two feeder wires 2 inches apart. There
is a formula for the surge impedance in-
volving the factors

kv = o= 1 3
e ‘ J
Fic. 14
given in Fig. 14. It is:
*
Z, = 277 105102-% (7

Where Z, is the surge impedance in ohms
8 Agd D are measured in the same di-

m 4+

or 8.

From our problem we know that Z, is 440
ohms and S is 2 inches. We want to know
what the value of D should be. We may re-
arrange the formula, by algebraf or we
may substitute the values and solve for S,
as we shall in this case. Substituting the
known values in formula (7), we get:

440 = 277 log 2 z>>< 2 ®)

* There are two standard logarithms, base 10 and
base ¢ (2.72+4). It is customary practice to signify
only the ¢ base by a subscript thus loge 49. Because
the base 10 is so common the subscript logio is omitted.
In this text log z will mean to the base 10.

By rearrangement we get:
28

- -1

O log=1 Ze/277 where log~! means a number whose

og is equal to the value of Z,/277.
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By arithmetic we reduce this to:

1.59 = log 4/D 9)
What this equation says is that the loga-
rithm of 4/D is equal to 1.59. Now what
number would have the logarithm 1.597
From a log table we find that the number
38.9 would have that logarithm. Check this
yourself. The characteristic of 38.9 is 1 and
the mantissa is .5899, which is close enough

to 0.59. Now we may say that:
; 4/D = 38.9 (10)
or
D=_% =.103inch (11)

38.9

Referring to a wire table we find that a
No. 10 B & S gauge wire would have a
diameter of .102 inch. Therefore, the ama-
teur would use this size wire.

COMBINING FORMULAS

We mentioned that radio experts who
find formulas of particular use in their work,
memorize certain basic formulas and derive
the ones they need. Two cases have been
cited. This sort of formula manipulation
may be greatly extended, and to cases where
formulas are introduced into one another.
Take the formula:

Z =R+ X, - X0 €Y)
which you will recognize as the impedance
formula for a resistance, inductive reactance
and capacitive reactance in series. This
formula is always memorized.

Now consider the same circuit without
capacitive reactance, that is in formula (1),
X.=0. This gives us at once the formula:

Z=VR+X2 2

If the inductive reactance is zero, that is
XL =0, we get:

z=VR+X2 (3)
In the latter case we must realize that —X.’
equals +X.' as taught in a course in
algebra.

Suppose we do not know the inductive or
capacity reactance, but know the line fre-
quency and the inductance and capacity
There are two basic formulas that tell us
that:

XL - ZTIL (4)
1
X. =5fC (5)

If we substitute formulas (4) and (5) in
formula (1), we get:

1 1
B VR’+(211'L 577) (6)
which is a very important formula in A.C.
circuit theory.
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The ability to combine and interpret for-
mulas is very valuable to the advanced
radio technician. We will consider a very
valuable case.

Suppose we have a resonant circuit con-
sisting of a fixed coil shunted by a variable
condenser. We know from experience that
it will tune to a maximum and minimum
frequency. Can we derive a formula that
will tell us quickly what the ratio of the
maximum to minimum frequency will be
without tedious computation? We always
start by setting down algebraically the state-
ment that interests us, and then simplify.
Suppose we consider the case where the in-
ductance is L, the maximum capacity is C:
and the minimum capacity is Ca. We must
be sure that C: and C. include the dis-
tributed capacity of the coil.

We start with the basic formula:

1
[ ——— (7)
2r J'LC
For the maximum capacity of the condenser
(100 dial position) we may say:
1
Jim———= ®
27 \LC,
For the minimum capacity setting (0 dial
setting) we may say:
fym——— (9)
2x \LC,
We know that f. will be larger than f, so let
us determine what the ratio of fa to f is.
Iﬁt us set this down algebraically thus:

1
!1 _ 2r \/m
f 1
27+JLC,
The next steps involve simplifying ex-
pression (10). Multiply the numerator and

denominator of the right-hand side by 2.
This gives:

(10)

1
f: _ VLG,
e (11)
7

Now multiply both numerator and denomi-

nator by V LCs and V'LC.. This simplifies
the expression to:
2 VILIG
"o, a2
and finally: P .
1 C
Ve 13)

With this formula it is simpler to tell
through what range a given tuned circuit
will respond. For example an R.F. broad-
cast tuned circuit may have a capacity vari-
ation of 9 to 1. In which case

%=4/‘ll=3 (14)

This tells us that the fa will be 3 times f..
In a manner similar to the way formula
(13) was derived, we can obtain the more
complete formula where the inductance and
capacity may vary. This is given by:

L_ /LG
,1 LzCz
A PRACTICAL PROBLEM IN DESIGN

As a practical problem, let us consider the
design of an oscillator and pretuner tuning
stages of a superheterodyne so that they
will track. We will assume, if two tie-down
points are realized, that satisfactory track-
ing may be arranged by trimmer adjust-
ments. The two tie-down points we will
assume are 1400 and 600 ke. From the
theory and practice of padding we know
that, at 1400 kec., enough turns are taken
off the oscillator coil so that a tie-down is
obtained and so that the oscillator fre-
quency is above the signal frequency by the
LF. value. At the lower frequency (600 ke.)
the number of turns taken off are insuffi-
cient, so a so-called padding condenser is
placed in series with the tuning condenser
in the oscillator circuit so a second tie-down
is obtained. The insertion of the padding
condenser has little effect at the high fre-
quency, and whatever upset is obtained may
be corrected by a trimmer. Obviously the
important problems in this design are the
oscillator coil inductance and the value of
the padding condenser.

_ Assume that the inductance of the coils
in the preselector is 250 wh and the LF. is
175 ke. From formula (13):

fa_ /s
{ol L—D

(15)

(16)
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we may now determine the value of the

* The notations are: p for pretuner, o for oscillator
1 for 1400 ke., and 2 for 600 ke. Thus f, is the reso-
nant frequency of the pretuner at 1400 ko.



oscillator inductance L. for this tie-down

point.
Substituting in the formula we get:
1400 _ / L _ g9 17
1575 250 04
Squaring the above equation, we get:
L
Zo_=,792 18
9Fo (18)

Therefore Lo = .792 X 250 =198 uh.
Now let us turn our attention to getting a

suitable tie-down at 600 kc., knowing that

L, =250 wh and L,=198 ph. From for-

mula: ;
.l’ - Lo Co’ 19
fos L, C,s (19)

we may determine the value of C.s, that is
the net value of Cpa the padding condenser
in series with C for that position (see Fig.
15). We need to know the value of Cpa.
First let us compute Cps from the formula:
C,y = 25330 ;. (20)
j’ 2 Ln
Where fps is in keo.
£, is in wh.
Substituting into the expression we get:
_ 25330
Cor =500 600 X 250 1)
25330
90,000,000
= ,000282 pf.
= 282 upf.

Now we may substitute into expression
(19). If we express Cps in micro-micro-
farads, we obtain Co.s in the same units.
Substituting we get:

600 198 X Coa

—_— = sa adbod 2

775 250 X 282 22)
simplifying:

M = Col

774 356 (23

Squaring both sides gives:

.600 355 (24
and: :
C,a = 214upf. (25)

Obviously while the condenser C is set to
have a capacity of 282 uuf., the net oscilla-
tor coil shunting capacity should be 214 uuf.
As stated, the padding condenser is used for
this purpose. For the two condensers in
series the net capacity is determined from
the formula:

CcC
Cos = pd 26
' =TT C. (26)
Substituting we get:
_ 282 X Cu 27
M=z : 27)

Multiplying both sides by (282 + Csa) we
obtain:

60400 + 214C,q = 282C,q (28)

60400 = 68C, 4 (29)
and Cou = 6%4;’0 = 800uuf. (30)

In actual practice the padding condenser
may be 850 puf. shunted by a 100 puf. trim-
mer. If the system is designed with the cal-
culated values and the pretuner and oscil-
lator aligned in the usual manner, very little
trouble will be experienced.

CONCLUSIONS

In this short lesson on formulas and their
use, we have shown how valuable a formula
may be for explaining theory, how they may
be used in design, and how they may help
in servicing. We merely wish to add that if
you have mastered your radio theory, and
can select the appropriate formula, and
learn how to juggle and compute with for-
mulas, you can make formulas do “tricks”
for you.

RADIO FORMULAS

A: FUNDAMENTAL RADIO—ELECTRIC CIRCUIT LAWS

Governing the entire theory of radio cir-
cuits are certain extremely important basic
laws. With these laws, advanced radio engi-
neers and scientists have developed many of
the formulas given in this text. Experience
has shown that a number of special prob-
lems are solved quicker by starting with the
fundamental circuit laws. Many of these
laws are valuable in visualizing what goes
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on in the circuit. Without regard to their
relative importance, these laws are as fol-
lows:
Kirchoff’s Laws

Law 1. The sum of all the currents flowing
towards a junction (connection) in any net-

work of conductors is equal to all the cur-
rent flowing away from the junetion. This
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law may also be stated as: The algebraic
sum of all the currents toward a junction is
zero. By the algebraic sum we mean that if
the current toward the junction be con-
sidered + or positive; the current away
from the junction shall be considered — or
negative. Alternatively we may assume
current “away”’ as 4+, and current “to” as —.
As a formula, the law may be written:

I =0 (1A)

where the symbol X is read as “sum of.” It
18 the Greek letter “sigma.”

Law 2. In any complete circuit of any net-
work the sum of all the voltages generated
(e.m.f’s) are equal to the algebraic sum of
all the voltage drops (impedance or re-
sistance drops). If we consider all the
exn.f’s as voltage rises, we may state this
law as: The sum of the voltage rises plus
all the voltage drops in a complete circuit
is equal to zero. Expressed as a formula,
this 1s written as:

ZE=0
Ezample of Kirchoff’'s Laws:

Given the supply and load circuit shown
in Fig. 1A

(24)

1,+.0631 hhe.0a7
o« — et 4 .
E I
- 50009 ‘ Iy=.02M
- { 2
250v - 2. 1 6000w
= 10,000 1/,= 013 %0072
® 20,0009,
3
Fia. 1A

Observe that there are three junction
points, namely: 1, 2, and 3. In all cases
Law 1 (£I1=0) is true.

For

(1) .0631 — .0417 — .0214 =0
(2) .0214 — .0072 — .0143 = 0 (close enough)
(3) .0072 + .0143 + .0417 — .0631 =0

The only voltage rise in this circuit is the
250 volts, and it may be a battery, genera-
tor or the equivalent of the output of a
rectifier. All other voltages of the circuit
are considered voltage drops. In this case
each voltage drop is equal to a resistance
times the current flowing through the re-
sistor. We have in this network three com-
plete circuits in which e.m.f’s and voltage
drops are concerned. There are also other
complete circuits if they are of value in
finding a solution. Let us take the circuits
each with an e.m.f. Considering the fact
that TE =0.
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Circuit 6-1-2-3-6 according to this law gives:

250 — .0214 X 5000 — .0143 X 10,000 = ?
250 — 107 — 143 =0

Circuit 6-1-4-3-6 gives:

250 — .0417 X 6000 = ?
250 — 250 =0

Circuit 6-1-2-5-3-6 gives:

250 — .0214 X 5000 — .0072 X 20,000 = ?
250 — 107 — 144 = 0 (close enough)

Note that in this example we have given
all the details of the circuit and proved by
simple computations that Kirchoff’s laws are
true. Accordingly we have shown that the
values are correct. This is of particular
value to the practical technician, where cir-
cuit values are given and he wants to prove
that they are correct. For the designer
there is a greater use for Kirchoff’s laws.
Given certain facts about the ecircuit, he
may want to find the remaining facts. For
example, suppose the generated voltage and
the resistance were known. He wants to
know the currents. Using laws 1 and 2, he
would set up as many equations as there
were unknown currents to be determined
and solve these simultaneous equations as
they are called, by algebra. The equations
for this circuit would be:

(1) 250 — 600015 = 0 (circuit 6-1-4-3-6)
(2) 250 — 500075 — 10,000/5 =0
(circuit 6-1-2-3-6)
(3) 250 — 500073 — 20,000/, =0
(circuit 6-1-2-5-3-6)
(4) I =1, — I- = 0 (Junction 1)
(5) Is — 14— Iy = 0 (Junction 2)

For the solution of these equations we refer
you to a text on algebra.

Ohm'’s Law.

Ohm’s law may be stated in a number of
ways. The most common statement is:

(a) The current through a resistance or a
reactance is the voltage applied divided by
the resistance or reactance. Stated as for
mulas we have:

I =E/R (3A)
I1=E/X (4A)
Where I is in amperes
E is in volts

R and X are in ohms

We must recognize the fact that X may
be inductive or capacitive reactance and
that the inductive reactance Xy is equal to
2xfL, while the capacitive reactance X. is
equal to 1/2#fC.

Of course we may have a device that has
resistance and reactance, the net being re-



ferred to as impedance Z. Ohm’s law must
then be written as:

I1=E/Z (5A)

In the general case of a device having
resistance, inductance and capacitance in
series, Z in this formula is equal to:

VR + (2L = 1/2JC)?

(b) Ohm’s law is also stated as follows:
The current through an inactive or passive
device (a device which does not itself gen-
erate a voltage) is proportional to the volt-
age applied. Stated as a formula, we have:

I =GE (6A)

Where I is in amperes
E is in volts
@ is in mhos
In this case G is referred to as the con-
ductance. )
For an inductance or capacitance this law
is algebraicly expressed as:

I = BE
Where B is in mhos

The symbol B is referred to as the sus-
ceptance of the device and is the reciprocal
of reactance, that is:

B=1/X (84)

Thus, for an inductance By is equal to
1/2nfL and for a capacitance B. is equal to
2xfC. Where the passive device or network
includes susceptance and conductance, the
sum effect is called the admittance, Y.
Ohm’s law therefore becomes.

I=YE
Where Y is in mhos

_In the general case of a circuit having re-
sistance, inductance and capacitance in
parallel, ¥ in this formula is equal to:

VG ¥ (2«fC — 1/2+fL)?

The importance of using resistance, re-
actance and impedance in one case and
using conductance, susceptance and admit-
tance in the other case arises from the fact
that in series circuits, R, X, and Z may be
added to get the resultant, while in parallel
circuits G, B, and Y may be added to get
the resultant.*

(7A)

(94)

The Principle of Superposition.

~ In any network consisting of resistances,
inductances and capacitances which do not
change in value, the currents produced by
the presence of many varied voltages

* It should be remembered that X, Z, B, and Y,
must be considered as vectors and so treated when
adding. We refer you to any standard text on the
fundamentals of electrical engineering.
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(e.mf’s) may be considered to be the sum
of the currents produced by the individual
e f.s. )

For examrle, if the voltage consists of a
fundamental, a third and a fifth harmonic,
the currents flowing may be considered first
for the fundamental, then for the third har-
monic and finally for the fifth harmonic.
The total current at any point in the circuit
then is the sum of the three. The absolute
value of the current will be given by the
formula:

I =T F1# +1s +ete. (10A)

If I, I, etc. is given in root mean square
value, I will be in rms.

In a number of circuits where the re-
sistance, capacitance and inductance do
vary, it is usual for initial purposes to as-
sume that they are constant. Corrections
or limitations are then necessary to qualify
the actual and apparent conditions.

The Reciprocity Theorem.

If any type of e.m.f. located at one point
in a circuit network produces a current at
any other point in the network, then the
same e.mnf. located at the second point
would produce the same current at the first
point.

This theorem does not apply to vacuum
tubes, rectifiers or devices where the circuit
acts only in one direction. The theorem is
helpful in filter, transmission line and gen-
eral circuit design. If E is the voltage act-
ing at point 1, and I the current produced
at the second point, then E/I is referred to
as the transfer impedance. In short it re-
duces a complex device or network to a
simple impedance.

Thevenin’s or Pollard’s Theorem.

A very important principle which states:
If an impedance Z is connected between any
two points in a network, the resultant cur-
rent I through the added impedance will be
given by dividing the voltage E existing
across the two points prior to connecting
the impedance, divided by Z plus the
impedance Z, that would be measured across
the two points prior to the connection of
the impedance. In calculating the im-
pedance Z; the em.f’s are considered inac-
tive. Thevenin’s theorem in equation form
is:

B
! Z+ 7%

Obviously the new voltage across the two
points will be IZ, and thus the new ter-
minal conditions are determined.

This theorem is quite valuable when some
load is to be added to an existing circuit

(11A)

and the new terminal conditions are to be
determined quickly.

Compensation Theorem

An impedance in any circuit may be re-
placed by a generator (with no internal im-
pedance) which at every instant duplicates
the voltage that appears across the replaced
impedance.

This principle is extremely useful in rep-
resenting such devices as microphones and
vacuum tubes or networks as equivalent
generators.

For purposes of substitution the theorem
as it is now to be stated has a more prac-
tical value. If a network is modified by
ehanging one portion of it by a change in
impedance, the effect in any other portion of
the circuit would be the same as if the
change were made by an em.f. acting in
series with the modified impedance and
equal to the change in impedance times the
current through that impedance before the
change was made.

Points of Equal Potential

It is convenient at times when consider-
ing complicated networks to consider points
of equal potential as electrically connected
by a wire of zero impedance. An example
of this is the balanced wheatstone bridge.

Short Circuit Current Solution of Cir-
cuits

_ All the principles outlined so far are used
in solving circuit problems. Quite often the
process is lengthy and tedious. The short
circuit current solution given now is at
times a superior method. This method is
particularly suitable in solving ecircuits
where several generators feed a load or a
passive network. The principle is stated as
follows:

The voltage across the real load is equal
to an equivalent load considering the load
and the generator impedances in parallel
multiplied by the sum of the short cir-
cuited currents of each generator, derived
by considering the terminals of each gen-
erator (including its series impedance)
shorted.

Example: Consider

nple : the simple circuit
shown in Fig. 2A.

4 2 3 4
o 5 ;L‘:"I
69 39 w |
'
Fia. 2A
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The equivalent resistance (we are dealing
with pure resistances) is the sum of 6, 3, 4,
and 4 ohms in parallel and equals:

1_1,1.1,1 _2+4+3+3
i R e 12
Solving this by algebra, we get:

R = 1ohm

The short circuit currents of branches No.
1, No. 2, and No. 3 are:

Iﬂ=%¥=+2
1.2=-_3—9 = =3
I.;=+—42Q=+5

The total short circuit current:
Is = 4+2 -3 +5 = 44

Therefore according to the short circuit
theory:

E=4X1=4volts
Current in the load:
I = 4/4 = 1 ampere

With the information given so far we may
compute the currents in each branch, know-
ing that the terminal voltage of each gen-
%ator is 4 volts. For example, in branch

0.2.

(Current flowing down)
ADVANCED CONCEPTS

Note that examples were taken where re-
sistors were the only circuit elements. The
same principles hold true if impedances, Z
were used. Also observe that in some of the
theorems the impedance factor was used.
The same principle will hold if resistances
R are used.

In solving a problem where impedances
are found, we should consider the impedance
as made up of two components referred to
as the real and imaginary components. To
distinguish the imaginary from the real, it
is prefixed by the letter j. Thus an im-
pedance is always written:

Z=R+jX
Whereas an admittance is always written:
Y=G+jB

The absolute value of Z, always written
|Z|, is given by the formula:

12l = yRr ¥ X0



Whereas the absolute value of Y is written:
Yl = Jae + B

The manipulation of such values, called
vector quantities require a knowledge of
electrical engineering and advanced algebra.
This is beyond the scope of this course.
Students with a suitable training will find
the subject treated in standard Electrical

Engineering texts * and texts on Algebra.}
Students interested in advanced radio engi-
neering may consider this a subject for ad-
vanced study. In the following formulas
only the absolute values, as read by a volt-
meter or ammeter are to be considered.

% Communication Engineering by Everitt, pub-
lislaetli"by MecGraw-Hill Book Company, Chapters I1
an s

+ Algebra for the Practical Man by Thompson, pub-
lished iy D, Van Nostrand Co., Chapter VIII.

B: RESISTORS

Resistance from Dimensions
R =pL/A (1B)

Where R is in ohms

ength

the cross section area

the resistance per unit length and cross

section.

If L is in feet, A in circular mils; p is the

resistance in ohms for a wire one foot

long and having a cross section of one

circular mil. See special electrical tables:
mto- 10.4; p atum = 17.1; p nichrome =
; eto.

Conductance from Dimensions

G=vyA/L (2B)

Where 4 is the cross section ares
L is the length
G is in mhos
v is the conductivity

® ity

vy=1/o (3B)
Resistance at a New Temperature (°C)
R. =R, (1 + at) (4B)

Wheret¢ is the new temperature degrees Centigrade
Ro is the resistance at 0° C
a is the temperature coefficient
Ry is the resistance (ohms at t° C)
Formula (4B) may be more conveniently
used as:

Ra = Ry [1 + alts — #)] (5B)

Where 3 is the final temp.

ty is the initial temp.

Rta the resistance at fs

Ru the resistance at {1

a the temperature coefficient, for example:
@ eopper = .00393; aalum = . ; ete.

Temperature Rise in Electrical
Conductors

1 /R, )
At = —( =¥ —1 6B

[+ Rgl ( )
Wher Atis the temperature rise

As copper wire is extensively used, the
practical formula becomes:

Al = 254 (&' - 1) (7B)
R'\

Add At to t,, the original temperature of
the surroundings, to find temperature of the
conductor.
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Resistors in Series
R=R;+R.+R.+R.+etc. (8B)
Where R, R, eto., are in ohms
1, R3, Rs, ete., are the series elements
R is the total resistance
When R:= R:= R, etc.:
R = ﬂRl (QB)

Where R is the resistance of one resistor
n is the number of resistors

Resistors in Parallel

1 1 1 1 1
oy e eeanmd o 060, (10B
g ta ity tone (0B
For three resistors in parallel:
R BlisRs (11B)

 RuRs + RiBs + RiRs
For two resistors in parallel:

pre RIRI
E=r+h s
For n resistors of equal value R, in parallel:
R = Ry/n (13B)
Conductance
G= R}' (14B)

Where R is in ohms
@ is in mhos

Conductors in Parali-=1
G = Gl + G1 + Ga + G. ’ ete. (15B)

Where G1, Gi, etc., are the conductances of the
evices
Equivalent Delta (7) of Star (T) or Vice-
Versa

In reducing complex circuits to simple cir-
cuits, it is convenieut in some cases to con-
vert a delta (called in radio a =) circuit
into a star (called in radio a 7') circuit. The
reverse may be the cases. See Fig. 1B for
notation. If point A is grounded, point B
with the ground is considered the input,
while point C with the ground is considered
the output, then the familiar # and 7' cir-
cuits in radio will be recognised.
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Ry

A

F1a. 1B

To change aw to a T *

R;R,
R e =8 16B-1
ey e AL
R.:R
R w100 16B-
Ry + Ry + Ry ( 2)
R\R
R" = ot 16B-3
R+ R: + Ry ( )

To change a T to a x *

Rl _ R/Rn + RMRR’IH + RIRHI (17B-1)
R, _ RIRII + Rl;g:n + RIRIII (17B—2)
R. - RIRII + R;R;’IIII + RIRIII (17B_3)

Power Loss

P =DIR (18B)
Where P is in watts
is in amperes
R is in ohms
P = B/R (19B)
Where E is the voltage drop across R
P = EI (20B)

Where E is the voltage across
I the current through the load
* We may substitute Z for R if we deal with im-
pedances.

C: CONDENSERS (STATIC)

Capacity from Dimensions
Two Plates
C = 225 %‘_‘ 10)

Where C is in micro-microfarads, uuf
A is area in square inches of one plate mesh-
ing with the other
d is the plate separation in inches
K is the dielectric constant of the separating
medium.  Kair = 1.0; Kgiass = 8 to 9;
Keastor oit = 13.0

Several plates
C = .225 52_4 n—1) (20)

Where n is the number of plates
A is in square inches
d is in inches

c=.0885’%‘(n—1) 30)

Where A is in square centimeters
d is in centimeters

Plates to Remove for Desired Capacity
N.=-(N,—1)%£+l (4C)
1

Where No is the remaining number of plates
N is the original number of plates
Co is the desired capacity
C1 is the original capacity

Capacity of Two Parallel Wires

- w

Where C is in micro-microfarads per foot
is the separation of wires
(center to center)
d is the diameter of the wire
d and D must be in the same units
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Capacity of Round Wire Surrounded by a
Round Tube

¢ = 135K
I

og (T
Ty

Where C is micro-microfarads per foot
K is the dielectric constant of separating
medium
Kair = 1. Assume K = 1 where beads are used only
infrequently for spacers
ri is the radius of the inner wire
ro is the radius of the inner surface of the
outer conductor
ri and ro are in the same units

(6C)

Condensers in Parallel

General
C=C+Ci+Ci+ Ci+ete. (7C)
Where C1, Cs, Cs, etc. are in the same units, and
represent the respective capacities of the
condensers
C is the total capacity, same units as Ci, etc,
Equal Condensers in Parallel
C= n(h (BC)

Where C) is the ity of one
n is the number in parallel

Condensers in Series

General
1 1,1 ,1,1
il g or + A + oo + ete. (9C)

Where C1, Cs, etc. are the respective capacities of
the condensers in series
C is the total capacity

Equal Condensers in Series
C =Ci/n (10C)

Where n s the number in series



Three Condensers in Series
Ca— CCC
C:Cs + CiCs + C\C,

Where C1, Cs, and Cs are the capacities of the three

(11C)

condensers
Two Condensers in Series
C\C,
= 12C
G+ C, )
Charge in a Condenser
Q=CE (13C)

Where C is in farads
E is in volts
Q is in coulombs

Energy Stored in a Condenser

W = 0.5 CE? (14C)
Where C is in farads
E is in volts
W is in joules
Elastance of a Condenser
=1/C (15C)

Where C is in farads
8 is in darafs

D: COILS (STATIC)

Inductance of Coils in Series.
L =1L+ Ly+ Ly + L, + ete. (1D)

Where L, Li, etc. are in the same units; henries,
enries, microhenries. No couplmg be-
tween coils.

Inductance of Coils in Parallel (No
Coupling)
1— l

j A 71 L (30)

+T+ ete.

Inductance of Two Coils with Coupling
L =1L, + Ly =2M (3D)

+ for aiding
— for opposing

Inductance of Single Layer Solenoids*
L = FdN? (4D-1)

Where L is in microhenries
N is the number of turns
d is the coil diameter in cms or inches
F the factor determined from curve
Fig. 12, page 11

_ 0.41 a*N?
90 9a + 10b

Where a and b are as indicated in Fig 1D, and are in
Centimeters, Multiply inches by 2.54 to get Centi-
meters.

(4D-2)

F1a. 1D

* All inductance formulu are approximations and
in radio work should be d by m ements and
turn adjustments made.
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Inductance of Multilayer Round Coils

See Fig. 1D. Applies to honeycomb,
smooth layer and jumbled layer windings.
When the width b is greater than the

radius a:

L - _-3l4a? N

JIES o i) SR 5D
6a + 9b + 10c¢ L
Where L is m)mlcrohennu .
a, b, ¢ m in t
When di i h multiply

mwerby254wgsthuh

For a pancake coil where b is much less
than ¢ (applies strictly to a coil in which the
b dimension is one layer wide):

L = Ala N
8a + 1l¢

Where L La_ in microhenries

(6D)

"y

For a square cross section coil b =c and
a=23/2 ¢ (diameter of core equals 2¢):

L = .064 CN?
Where L is in ph

C is width and height in inches
N is the number of turns

(7D)

Mutual Inductance of Coaxial Solenoids
The following formula is only approxi-

=

F1a. 2D

mate. Follow the given grocedure First
find the value of » and rs by the formulas:

ke
rn o= 4/(‘1+A-f—])2+_—§,

Then find the ratio of = K

181

(8D-1)

(8D-2)

Find N from the following graph, corre-
sponding to K

Lo00t

-

o000t
o ! 2 3 4

F1e. 3D

SHe 7 B 9

Compute the value of M, from the for-
mula:

M,=NVJAXa (8D-3)
e ad & o i 310 U s
And finally by substituting M, in:
M=nnM, (8D-4)

Where M is in microhenries
ni is the turns in coil 1
ns is the turns in coil 2

The process holds true for single layer
coils whose length is equal to the diameter.
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The method is close enough for other coils.
r: and 7, are measured to the centers of the
wound layers.

Distributed Capacity Single Layer Coils

C, = .6r (9D-1)
Where Co is in uuf.
r is the coil radius in cms.
C, =.76D (9D-2)

Where Co is in puf.
D is the coil diameter in inches

Chokes

C, and the coil inductance L form an anti-
resonant circuit at W= 1/\/ LC,, where
w=2nf,. Choke is inductive 0 to f, 2fo
to 3fo, 4fo to 5fo, 6fs to 7fo, etc. Choke is
capacitive fo to 2fo, 3f. to 4]o, 5o to 6f, ete.
Maximum impedance at fo, 3fo, 5fo, ete., and
zero impedance at 2f,, 4fo, 6fo, etc.

Inductance of Two Parallel Wires

L = .281 log + .030 (10D)

Where L is wh per foot of the transmission line
formed by the 2 wires
D is center to center separation of wires
d is the diameter of the wire

Inductance of a Round Wire Surrounded
By a Round Tube

L = .140 103:4» +.015 (11D)

Where L is uh per foot of transmission line formed
ro is radius of inner surface of outer tube
ri is radius of inner wire

Suggestions in Coil Design

When dimensions of a coil are given, the
inductance calculation requires simple sub-
stitutions in the proper formula. When a
definite inductance or mutual inductance is
desired and the dimensions are to be found,
the following procedure may be used. Find
the proper formula. If certain dimensions
are fixed by practical needs, they should be
substituted into the formula. Assume vari-
ous values for the other dimensions and cal-
culate the inductance. Remember that in-
ductance roughly increases as the square of
the turns, square of the diameter and in-



versely as the length. By these facts you
may approximate a better value, and thus
approach values that give the desired L.

To find the length of a coil assume » wire
size and insulation covering and from a wire
table find the number of turns per inch.
For a single layer coil the number of turns
divided by the turns per inch give the coil
length. For a multilayer coil this should be
divided by the number of layers.

Coils with Iron Cores

L =126 N?P X 107 (12D)

Where L is in henries
N is the turns

P is the permeance of the iron circuit, and

is defined by the expression u‘%; u being

the permeability, A the cross-section,
and 1 the length of the core, all dimensions
in centimeters 10~* = .00000001
For radio and audio frequency chokes with
a polarizing D.C. current, P should be the
A.C. permeance, for the frequency em-
ployed.

Energy Stored in a Coil
W =0.5L I* (13D)

E: CIRCUITS HAVING ONLY RESISTANCES*

Ohm’s Law
E =1IR (1E-1)
I =E/R (1E-2)
R =E/I (1E-3)

Where E is in volts
J is in amperes
R is in ohms

Generator with Resistance

& "
Fi1a. 1E
V.=E, - IR, (2E-1)
E,=1(R;+ R, (2E-2)
_ E,
I —R. TR (2E-3)

Where Eg is the no load or generated voltage
Vi the terminal voltage
I the line current
Rg the generator resistance in ohms
Ry the load resistance in ohms

E; may be a generator; a battery or a
vacuum tube, microphone or similar device
which may by the compensation theorem
be assumed as a generator.

Power Generated
P = RE,I (BE)

Where P is in watts
E is in volts
I is in amperes
* The formulas in this section apply to any A.C. or
D.C. circuit with a resistance load. For A.C. circuits
the r.m.s. values are consid
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Power Delivered

P=VI (4E)
P =1IE, — 'R,
Efficiency of Circuit
Ef. = V./E, (56E-1)
R,
= —_— 5E_2
TR @ 9

To find Eff. in percent multiply by 100.

Maximum Power

Obtained when:
Rl - Rl, (GE)

Voltage Generated by a D.C. Motor with
Shunt Field

B.=KI.8 (TE)

Where Eg is the average generated voltage

It the field current

S the speed in revolutions per minute

K is a constant for a given motor deter-
mined by setting I't, S and measuring Fyg,
the no load voltage. K = Eg/ItS.
Formula holds good for values of It which
do not produce magnetic core saturation.

Power Loss in a Resistance

P =I'R (8E-1)
P=YVI (8E-2)
P =V*R (8E-3)

Where P is in watts

is the resistor value in ohms

is the voltage across the resistor
is the current through the resistor

~

iy = Jy8in (ot — 6) for lagging wave (6F-2)

F: A.C. CIRCUITS WITH IMPEDANCE

Fundamental Concepts To Change Degrees to Radian Angles

6 is usually expressed in degrees. When
substituting in the sine formula it must be
in radian angles.

Sine Waves

0, = 1'_6,1
180 (7F)
Wh r i8 th i
M e zd i: t'ix: ;:gll:lilnagge;:es
Representing Lagging and Leading Com-
Fie. 1F sonents ¥ vone
= [y sin wl (1F) I
¢ = By sin of (2F) . 4 ;
'~
Where i and ¢ are the instantaneous values -
Iv and Em are the maximum or peak Tnz
¢ ':a:;‘::a in seconds
w ;a the angular velocity and equals Fia. 3F
=2 3F
i 8F) = I, sin of (8F-1)
Where f is the frequency in cycles per second
1y = Iy si t+6 _
Average Value ! et My ek < 5) (8F-2)
Iy = 636 I, (4F-1) i3 = Iy28in (wl — 65) (8F-3)
E,y = .636 Ey (4F-2) Power Factor
Root Mean Square Value 1 ]
Tems. = .7071y (5F-1) /ir' |
En.u_s_ = .707Eu (5F-2) =
Phase Angle Fro. 4F
p.f. = cos 8 (9F)
Power
P =VIcos?8 (10F)
=VI X pJf.
Where P is i
Fia. 2F e 14 ‘v’ollltla:: t::l‘osl device (rms value),

I current through device (rms value)

I is the reference wave Reactance

I, lags I by the angle 6. X, = 2xfL (11F-1)

. i X Where X1, is reactance of coil in ohms
Formulas indicating leading or lagging L is the inductance of coil in henries
phase angles follow : f is the frequency of the current

X, =1/2xfC (11F-2)

Where C is the capacity of condenser in farads j
X is the reactance in ohms

iy = I, 8in (wt + 6) for leading wave (6F-1)
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Condenser, Coil and Resistor in Series

[

Fiu or

R, L and C wn Seres
z =R+ (X, — X.)?

Y e

R and L in Series

(12F-1)

Z =R+ X 12F-2)
- NEF @
R and C in Series
Z =R+ X7 (12F-3)
— 7 1 \t
- )
L and C in Series
Z =X, =X, (12F-4)
- 2afL —%fc
Current in Series Circuit
1=E/Z (13F-1)

Where Z is determined from (12F-1) to (12F-4)

ower Factor

-k ¥
pl. =7 (13F-2)

Maximum Current |, in Series Circuit

when 2xfL =le,0 (14F-1)
fa b (14F-2)
2x yLC
c "E,Tzlﬁ (14F-3)
L= 4’21!2 - (14F-4)

Where L is in henries
isin f
f isino.p.s.

STEAM POWERED RADIO.COM

These are referred to as the necessary
conditions for resonance and the current at
resonance is given by the formula:

I, = E/R (14F-5)

The current is in phase with the applied
voltage. Theoretically with no resistance
in the circuit the current is infinite.

Voltage Across Each Element of a Series

Circuit
Ve = IR (15F-1)
V. = 2xfLI (15F-2)
Ve = 1/2=fC (15F-3)

Where I is computed from 13F-1

Coil and Condenser in Parallel Each with
or without Resistance

I,

1

R

7\
S

F1s. 6F

With R. and R.

E/ ‘//fg; (;7)

E/ VR + &L?

1. (16F-1)

I

I, (16F-2)

If Re can be neglected:

o o B (16F-3)
<__X°l/.1‘,1'2,+ X’ )
VR + (X, — X.»

If Ry is small compared to Xv:

I =f—; j i (16F-4)
C" VRI¥ (X, - X
When X.— X., resonance:
fw 2 (16F-5)

- [:/7?_[‘('

The factor L/R.C is the apparent im-
pedance of a parallel resonant circuit, and
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is purely resistive; i.e., the current I is in
phase with the voltage E.

Practical Resonance Formulas

The general formula for the frequency at
which resonance occurs in either series or
parallel circuits is:

. 1
ZIV LC
This formula is based on negligible circuit

resistance, a condition safely assumed 1n

practical radio circuits, and:
Where in 17F-1Zl isino. p.s.

is in henries

f (17F-1)

C is in farads
R is in ohms
159.
fow e (17F-2)
JLC
25,330
L aa i) A,
% (17F-3)
25,330 "
c ST (17F-4)

Where in 17F-2 to 17F-4
is in kilocycles

L is in microhenries

C is in microfarads

Q Factor or Circuit Q

Quite often in discussing a series or par-
allel resonant circuit, the term Q is found.
Since in practical series and parallel reso-
nance circuits the circuit resistance is_in-
herent in the coil, the merit of a coil is
expressed by its Q factor.

Q =wL/R (18F-1)

Q =1/0CR (18F-2)
Where L is in henries
R isin ohms

is a figure of merit
8 is in farads

When R includes all circuit losses and the
load, the Q factor is better termed Circuit
Q. The Q factor represents essentially the
voltage amplification in a coil by virtue of
its series resonance or the impedance am-
plification in a coil by virtue of its parallel
resonance.

G: COUPLED CIRCUITS

Basic Formulas

I 1
2. == / —
s |1 I
£ zn z‘j
2
Fia. 1G

Given a general circuit with the coupling
impedance Zu, feeding a load whose im-
pedance is Z.. The generator has an im-
pedance Zq and generates a voltage Eq. In
general coupled circuits and tube coupling,
of primary importance, is the voltage across
the load (V). For purposes of simple
handling of the circuit, the equivalent im-
pedance of Zx and Zy. in parallel as viewed
from the generator (terminals 1 and 2) is
helpful. This is termed the primary
equivalent impedance of the coupling de-
vice.

Impedance Reflected Into the Primary
2y = 2uZ (1G-1)
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Where Z1s is the impedance of Zu and Z. between
terminals 1 and 2

Primary Current

B (Zm + Z1)
g m RO ION TELLS (-5
¢ = ZaZm + 2ot + 2, O
Coupling Current
E; Z,
I DGO . (-3
o ZcZw + ZcZL + ZuZL ( )
Secondary or Load Current
Ec Z
L= EoZm 1G-4
g ZcZw + ZcZy + ZmZL. ( )
Load Voltage
L (1G-5)

L ZoZu ¥ 2ol + Zuln

It is to be remembered that any im-
pedance Z may be a device having a real
and imaginary component (Z=ZF 4 jX).
Or it may be a resistor or a reactance.
Transformer coupling or network coupling
may be reduced to an equivalent Zu. Ex-



perts with the above basic formulas have
derived formulas for practical circuits* We
shall consider only those that are regarded
as most important.

Transformer Coupled

(2G-1)

(2G-2)

- BER
ReRe + w*M?

Where, see Fig. 2G, Lp is small in comparison to Ls
or unity coupling exists

Induced Secondary Voltage

Es=wMIp (2G-3)
Is = Bs/R. (2G-4)
- wME
RepRL + «*M?
Vo = IsRL (2G-5)
wM RLE

= ReRL + & M?

When the coefficient of coupling K is
known:

M = K+ LeLs (2G-6)
When K is eq'uAal'to 1 (unity)
M = VIL:Ls (2G-7)

Ideal Transformer Coupled (K = 1)

wLe and wLs are very large in comparison
to Re or Ru. See Fig. 3G. Transformers

* For a more complete treatment of circuits con-
taining L, C, R, and M refer to Henney's Radio En-
zineering Handbook, published by McGraw-Hill Book
Co , New York City.
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may be considered on the basis of turn
ratio.

(3G-1)

Secondary Resistance Rwi reflected into
primary :

Ry = RL/TR? (3G-2)
= NP *
Ry ’1\75) (3G-3)

To match reflected R to Re—condition
for maximum power transfer when:

(4G)

Fia. 4G

Case when C is tuned so Is is a maximum.

Reflected Secondary Load into Primary is:

By = P2 (5G-1)
Rs
Output Voltage
ME 1
b i mmsem P
_ «'MLE
RpRs + »*M?
Mazimum V. when (optimum condition) :
wM = VEReRs (5G-3)
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IT°S THE RUN THAT COUNTS

In baseball, the hero of the game is the man who
scores. There are plenty of others who ‘“almost”
hit a home run—who “almost” scored—but these
are forgotten men, as ‘“almost” does not count.

First base—second base—third base—these are
only stopping places on the road to a score. The
world is full of stopping places, all guarded by other
players equally bent upon winning. In the game of
life, you must remember it is the run that counts—
not the men “left on bases.”

It’s the fellow who knows all the rules—who is well
trained and is prepared to take advantage of every
opportunity who gets ahead. Don’t be “left on base.”
Seize every opportunity to move forward—give the
game everything that you have. Remember, no man
can be stopped always—the fellow who keeps going
is sure to win.
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